
Matrix Analysis with Applications
Dr. Sanjeev Kumar

Department of Mathematics
Indian Institute of Technology, Roorkee

Lecture - 31
Regularization of Ill-Conditioned Systems

Hello friends. So, welcome to the lecture on Regularization of Ill-Conditioned Systems.

So, in the last lecture we have learnt about the ill-conditioned systems and we have seen

if  the  conditional  number  of  the  coefficient  matrix  is  quite  large  then  system is  ill-

conditioned. And if we have solve such system as such then the solution is not that useful

because we are having a small error that may be due to sensor or due to computer we can

get a very large deviation in our final solution. So, we are not sure about the solution

whether the solution is correct or not.

So, in this lecture we will learn regularization of ill-conditioned systems means how to

solve ill-conditioned systems by defining a suitable regularization term.
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So, if you recall last to last lecture there we have learnt if we are having a system AX

equals to b with singular value decomposition of A as U into S into V transpose then

least  square solution of this system is defined as AX minus b, then by making some

calculation and defining Z equals to V T X. We have seen that ZI equals to U I T b upon

sigma I for I equals to 1 2 up to r and arbitrary for I equals to r plus 1 up to n.



Later on by seeing the that the norm of Z equals to norm of X we have written the least

square approximation of X as summation I equals to 1 to r where r is the number of

nonzero singular values U I transpose b upon sigma I into V I. Now, just look here it will

become u one transpose b upon sigma one into V 1 U 2 transpose b upon sigma 2 into V

2 plus sum U I transpose b upon sigma I plus up to U r transpose b upon sigma r, and

here V I and here V r.

Now, if any 1 of sigma I if 1 of the sigma I is small or I will say is very small then a

small change in b gives a large change in the solution X star this is why because b is

numerator and sigma I which is very small close to 0 is in the denominator. And if you

will divide something with a very small value which is very close to 0 you will get a

large change and that is why that conditional number is sigma one upon sigma r means

the biggest singular value upon a smallest singular value, and if it is very small this is

quite large and system is ill-condition. And the same kind of analysis we can make here

if sigma r is very small if you make a small change in b you will get a large change in X

star means your system will be ill-conditioned.

Now how to avoid this  problem of ill-conditioned system, that  we will  learn in this

particular lecture.
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So, regularization of ill-conditioned system so, consider an ill-conditioned system AX

equals to b where sigma one over sigma r is quite large where sigma 1 sigma 2 sigma r is



the smallest singular value of a then it might be useful to consider the regularized least

square solution instead of the earlier 1 here earlier  1 means which we have learnt in

previous lectures. So, this solution is defined as you just find out X which minimize 1 by

2 times norm of X minus b plus here we are having a regularization term.

So now, instead of minimizing this only which we have taken in the earlier case we are

minimizing this whole thing what will happen when you will minimize the norm of X it

will it will stop to have a large deviation in the X and hence your solution will not be

having the large change. So, this particular term is called regularization term and this

kind  of  regularization  is  called  Thikonov  regularization  which  is  quite  popular  in

regularization theory. So, here I am telling it in terms of linear systems in terms of matrix

analysis.

So, here this particular parameter lambda will be a positive real number. And it is called

the regularization parameter which is not known a priori and has to be determined based

on the problem data we will learn how to determine it by taking an example.
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Now, we have to minimize this particular function let us say this equation 1. So now,

minimization of half norm AX minus b plus lambda by 2 the norm of X and will be

equals to I can write this minimization of a root lambda I into X minus b 0. So, both of

these are similar. So, let us say it equation 2.



Now for lambda greater than 0, so if lambda is non 0 what will happen the size of matrix

A root lambda I will be means it will be having m plus n number of rows m from a n

from I, because I is a n by n identity matrix into n number of columns and has always

full rank full rank means n because even though if a is 0 I is a n by n matrix. So, the rank

of this matrix will be always n and you are having a rank and coefficient matrix and x is

having n number of unknowns. So, you will be always having a unique solution.

So, the regularized system 2 has a unique solution always. So, now how to find out this

unique solution? So, we have learnt in a lecture if you are having a system AX equals to

b where A is a rectangular matrix then the least square approximation of this A will be A

transpose A into X equals to a transpose b, and from here X will be written as a transpose

A inverse into A transpose into b which is the pseudo inverse of A.

So, in the same way now the normal equation so, this is called a normal equation to this

system so, the now the normal equation to regularized system 2 can be written as a root

lambda I transpose because like AX into equals to b. So, here A is replaced by A root

lambda I into a root lambda I into X equals to A root lambda I transpose into b 0 or this

can be written as a transpose into A plus lambda I X.

So, this is the left hand side equals to A transpose into b ok. If I take the singular value if

the SVD of A equals to U S V transpose then this I can write U S V transpose transpose

into A. So, A will become U S V transpose plus lambda I, I can write V into V transpose

time X equals to U S V transpose into b. So, what I have done where ever I am having A

in this normal equation I am writing it is singular value decomposition.

So, from here if I write this U S V transpose transpose into U S V T. So, this can be

writ10  as  v  s  transpose  into  U  transpose  because  ABC transpose  is  C  transpose  b

transpose a transpose into U S V T. So, U 2 into U will  become I because U is  an

orthogonal matrix. So, this can be written as V S T S into V T. So, this system I can write

V S T S plus lambda I into V transpose and this into X equals to what I am having here V

S T U T b. Now if I premultiply this particular equation by a matrix V transpose then this

will become V transpose into V equals to I. So, S T S plus lambda I into V transpose x

equals to V transpose into V will become I S t U T b now put V T X equals to Z as we

have done the earlier case.
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So, then it can be written as S T S plus lambda I into Z equals to S T U T b, now if you

look at this matrix it is a diagonal matrix because S S is a matrix which is having non 0

values only at few of the diagonal. So, S T S will be A square matrix having non 0 values

if they are at the diagonal main diagonal only. So, then the solution Z I can be given as

here sigma I due to this s transpose then U I transpose into b upon S T S will become

sigma I square plus lambda for I equals to 1 2 up to r and it will be 0 for I equals to r plus

1 up to n.

Here, if I calculate the least square approximation in the same way which I have done

earlier it will become summation I equals to one to r if I is having r non singular values

sigma I U I transpose b upon sigma I square plus lambda into V I now in the earlier case

where we have not use the regularization term I obtain this solution as I equals to 1 to r u

I T b upon sigma I into V I and in the regularize case I am obtaining this solution. Now if

lambda is tending to 0. In this case this particular solution put lambda equals to 0. So,

sigma I will cancel sigma I square this will become this particular solution.

Means lambda equals to 0 means we do not have the regularization term. So, this is the

same solution,  but with the regularization term now how this solution is useful even

though if a sigma I is very small ok, you can find out a suitable lambda so, that if you

make a small change in b it will protect to having a large change in the final solution due

to the choice of lambda. So, here what I can say. So, what I can write here adding lambda



by 2 means this regularization term to the ordinary least square. So, this term acts as a

filter  means  contribution  from  singular  values  which  are  larger  relative  to  the

regularization parameter means the sigma those are greater than lambda are left almost

unchanged means you will get this kind of solution.

And where as you are having small sigma when compare to the lambda the solution will

be this particular complete term will be treated as 0.
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So, I can write this particular term as sigma I U I t b upon sigma I square plus lambda

this can be treated like as a filter and it will be 0 if you are having a singular value which

is very close to 0 small singular values. So, there is no contribution from that term in the

solution and it will become U I T b upon sigma I means here ordinary least square if

sigma I is greater than lambda hence we can protect our solution to have a large change,

because the term which will give you large change we have made the coefficient of that

term as 0.

So, there will be no contribution of that particular term now question arise how to choose

lambda. So, here suppose the data are b equals to b ex plus delta b ok. So, b x is a data

without any perturbation and delta b that the possible perturbation in my right hand side

vector b. So, then I can write my X e x as I equals to 1 to r U I T into b E X upon sigma I

into V I or this should be write as b. So, this is like these. So, this is the minimum norm



solution of ordinary least square with unperturbed data right hand side vector. So, this

will come in this form.

Now, but we can only compute b we do not know how much perturbation is there in the

b that is b ex plus delta b since we do not know b ex. Now the solution of regularized

linear least square problem is X star equals to I equals to 1 to r sigma I U I T b upon

sigma I square plus lambda plus sigma I U I t into delta b upon sigma I square plus

lambda into V I. So, here I have written regularize least  linear least  square b I have

written as b ex plus delta b here.
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We observe that I equals to one to r sigma I u I t b ex upon sigma I square plus lambda

tends  to  X  ex  as  lambda  tends  to  0.  Means  whenever  lambda  is  going  to  0  your

regularized linear least square solutions becomes the solution of the ordinary linear least

square on the other hand we can see sigma I U I t into delta b means when perturbation

in b upon sigma I square plus lambda will be approximately equals to 0 if sigma I is very

very small to lambda and this is as the ordinary least square if sigma I means singular

values are quite greater than lambda.

So, these 2 facts suggest us. So, we suggest to choose lambda sufficiently large to ensure

that delta b in the data are not magnified by small singular values. So, in this way by

choosing a  suitable  lambda if  you know the  singular  values  of  the matrix  A choose

lambda somewhere which is greater than some of the small singular values, so that the



contribution due to those small singular values will be neglected in the regularized least

square approximation.

So, in this lecture we have learnt how to perform regularization or in this lecture we have

learnt  Thikonov  regularization  of  the  linear  systems  we  have  learnt  how  to  choose

regularization  parameter.  And  we  have  done  the  analysis  of  regularize  least  square

approximation based on the singular values.
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These are the references.

Thank you very much.


