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Single Value Decomposition

 Hello friends. So, welcome to the lecture on Singular Value Decomposition. So, singular

value decomposition or SVD in short, is a very powerful tool of a linear algebra and

matrix analysis. It is having variety of applications ranging from data analysis then row

rank approximation to image and signal processing.
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So, the definition of SVD is the singular value decomposition of a matrix A of order m

by n is the factorization of a into the product of three matrices that is U S and V such that

A equals to U into S into V transpose, where U and V are having orthonormal columns

and the matrix S is diagonal with non-negative real entries.
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So, what I want to say the matrix A is having size m by n. So, this matrix A I am writing

as the product of matrix U S and V transpose. Here, the matrix U is of size m by n and all

the n columns of U are orthonormal. The matrix n the matrix S is a n by n diagonal

matrix and the matrix V, V transpose is n by n; so the V. So, like this so, if I am having a

matrix A of like this so, m by n, so from the size itself you can see this A is having more

rows than columns then it will be equals to m by n matrix U and then a matrix n by n

matrix S which is diagonal and V transpose. So, this is called reduced singular value

decomposition.

Another type of singular value decomposition is called full SVD or full singular value

decomposition. So, there again we write A as the product of U, S, and V transpose, here

U is an orthogonal matrix of size, if this is m by n then U will be of size m by m, V is

also orthogonal of size n by n and the matrix S is of size m by n. So, this is full singular

value decomposition and this is reduced singular value decomposition. So, let us see this

further.



(Refer Slide Time: 04:47)

So, here I am saying A is m by n matrix. So, it will become a matrix U which will be

having column u 1, u 2, up to u n and each u i will belongs to m dimensional space,

means having the m component and then I am having matrix S which is having a matrix

of n by n and it is a diagonal matrix having diagonal entries are sigma 1, sigma 2 up to

sigma n and then I will be having the matrix V which is V transpose which is again

having  n  by  n  matrix.  So,  it  will  be  having  n  columns  and  each  v  i  belongs  to  n

dimensional real vector space means each column is a vector of this one. Moreover u i's

are orthonormal as well as v i's are orthonormal. So, these are orthonormal vectors.

Here, sigma 1 will be means sigma 1, sigma 2 sigma n will appear in a non increasing

order, moreover and all will be non negative these sigma is means sigma 1, sigma 2,

sigma  3  are  called  singular  values  of  A.  Hence,  I  can  say  singular  values  are  non

negative. Furthermore, we will say they are not only non negative they are also real.
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Now, this is the case of reduce SVD if I talk about full SVD then I am having a, which is

of size m by n then I am writing matrix U of size m by n. So, here I will be having only

m columns and each u i will be having m component here my matrices will be of size m

by n.

So, let us take a case first m is greater than n means you are having the more number of

rows than columns in matrix A, then S will be written as sigma 1, 0, 0, 0, 0, sigma 2, 0,

0, 0, 0 then you will be having sigma n here. So, a n by n diagonal sub matrix and then m

minus n number of 0 rows. So, it is m by n matrix where a m by n sub matrix this one

and m minus m 0 rows. Finally, I will be having a n by n orthogonal matrix V transpose.

So, it will be like v 1, v 2, v n. So, each v i belongs to R n.

Now, this is the case if m is less than n then A will be this will remain same only S will

change here. So, now, the shape of S will be like this sigma 1, 0, 0, sigma 2, 0, 0, 0,

sigma m. So, m by m sub matrix which is diagonal and then m minus n number of 0

columns to make it m by n. And then finally, V transpose which is again an orthogonal

matrix orthogonal matrix means all v i's are orthonormal all u i's make a orthonormal set.

Now, this is the SVD in both the cases means how what will be the shape of matrix U,

what will be the shape of matrix S and what will be the shape of matrix V. Now, how to

compute?
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So, how to do SVD? Basically, how to find matrix the three matrix. So, how to find

matrix U? So, basically the matrix A is of size of size m by n. So, if I take the matrix A

into A transpose the size of this matrix will be of order m by m. So, the size of this

matrix is m by m. Now, further more this will be a symmetric matrix.

So, the Eigen values of this matrix means A into A transpose will be real, moreover it

will contain an orthonormal set of Eigenvectors since it is symmetric. So, the columns of

matrix U will be the orthonormal Eigenvectors of A into A transpose. So, what I want to

say the columns of U are the orthonormal Eigenvectors of A into A transpose. So, in this

way we will be able to compute matrix U which is orthogonal matrix.

Now, how to compute matrix V which is again orthogonal of size n by n; so basically the

columns of V are the orthonormal Eigenvectors of A transpose A and this you can prove

quite  easily  because  A is  USV transpose.  So,  A into  A transpose  will  become USV

transpose into USV transpose transpose. So, it comes out to be USV transpose into V

transpose transpose will become V, S transpose into U transpose.

So, this will become U and it will be having shape like this sigma 1 square, 0, 0, 0, 0,

sigma 2 square S into S transpose like this and will depend into U transpose 0, 0, sigma

m square. So, here you can see I can write A into A transpose as U this matrix into U

transpose and what will be the Eigenvalue of A into A transpose they will be sigma 1,

square sigma 2 square and sigma n square.



Hence,  it  is  a  diagonalization  of  A into A transpose,  where the Eigenvectors  are  the

columns of matrix U and hence the columns of U are the orthonormal Eigenvectors of A

into A transpose. The similar kind of analysis we can do for the columns of V those are

the orthonormal Eigenvectors of A transpose into A. So, this is.
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Now, how to find out S? So, S will be containing the singular values of the matrix A and

the singular values are the singular values that is sigma 1, sigma 2 up to sigma n are the

square root of the Eigenvalues of A into A transpose or A transpose into A because both

will be having the same sort of Eigenvalues. If 1 is having the bigger size the rest of the

Eigenvalues will be 0 because that is due to rare deficiency. So, in this  way we can

calculate  U, we can calculate  V, we can write our matrix  S and we can perform the

singular value decomposition of A that is USV transpose.
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So, let us take an example of it. Find the singular value decomposition of A equals to 2,

2, 1, 1. So, it is a square matrix for simplicity I have taken. I will take an example of

rectangular matrix also. So, here A into A transpose will become 2, 2, 1, 1 into 2, 2, 1, 1

which comes out to be 8, 4, 4, 2. So, the Eigenvalue of this A into A transpose will come

so, lambda minus 8 into lambda minus 2 minus 16 equals to 0. So, lambda equals to 10

and 0. Here eigenvector corresponding lambda equals to 10 is so, A A transpose minus 10

I into x equals to 0. So, it will be 2 minus 8 2 sorry 2 minus 10 it will become minus 8

minus 10 minus 2, 4, 4 minus 8, x 1, x 2 equals to 0, 0. So, the solution of this will

become x 1 equals to 2 x 2.

So, if I take x 2 equals to 1. So, Eigenvector will become. So, x 2 is 1. So, x 1 will

become 2, 2, 1 transpose. Similarly, Eigenvector corresponding to lambda equals to 0

will become A into A transpose minus 0 I into x equals to 0. So, this gives me 8, 4, 4, 2, x

1, x 2 equals to 0, 0. So, it means 2x 1 equals to minus x 2. So, from here Eigenvector I

can write  if  I  take x minus 1 so,  1  and minus 2 transpose.  One more thing is  very

important  here we have to make this Eigenvectors orthonormal Eigenvectors.  So, we

have to divide this by the norm of these vectors. So, norm of this vector will be root 5,

norm of this vector will be root 5. So, my matrix U will become 1 upon root 5 into the

first Eigenvector 2 1 is the first column of U and 1 minus 2. So, this is the matrix a U.



Now, I will find the matrix V. So, for that I will take A transpose into A. So, A transpose

into A will become 2, 2, 1, 1 is 2, 2, 1, 1. So, this comes out to be 4 plus 1, 5, 5, 5, 5. So,

here again Eigenvalues come out to be because both will be having the same Eigenvalue

because Eigenvalues of A B and B A are the same. So, A into A transpose A and A

transpose into A will be having the same Eigenvalue. Moreover, if I find the Eigenvector

corresponding to lambda equals to 10. So, this comes out to be minus 5, 5, 5, minus 5, x

1, x 2 equals to 0, 0 this gives me x 1 equals to x 2. Similarly, if I take lambda equals to 0

I will get so, this gives me an Eigenvector 1 1 transpose and from here I got x 1 equals to

minus x 2. So, from here I got another Eigenvector 1, minus 1 transpose.

So,  here  my matrix  V will  become  Eigenvector  corresponding  to  of  A transpose  A

corresponding to lambda equals to 10. So, it is 1, 1 only thing I have to divide it by the

lengths which is root 2 1, 1, 1 minus 1.
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So, what I am having U is 1 upon root 5 and then I am having 2, 1 and 1, minus 2 V

equals to 1 upon root 2, 1, 1, 1 minus 1. Now, I need to find out matrix S. As I told you

my sigma 1 which is the bigger singular value will be the square root of the biggest

Eigenvalue of A A transpose or A transpose A, so which is 10. So, it will become root 10,

0, 0 another Eigenvalue is 0. So, root square root of 0 will be 0.

So, here a will be having singular value decomposition U which is 2 upon root 5, 1 upon

root 5, 1 upon root 5, minus 2 upon root 5 into S which is root 10, 0, 0, 0 and then V



transpose; so 1 by root 2, 1 by root 2, 1 by root 2, minus 1 by root 2. So, this is the

singular value decomposition of a square matrix.

Let me take another example in which I am having a rectangular matrix.
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So, example is find the singular value decomposition of matrix A which is given as 1, 0,

0, 1, 1, 0 and 0, 1. So, let us solve this. So, here A into A transpose will become it will be

a 2 by 2 matrix, 2, 0, 0, 2 and A transpose A will become 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0

and then 0, 1, 0, 1.

Now, let us first find out U for which I have to use A into A transpose. So, Eigenvalues of

A into A transpose will become 2 and 2. So, lambda equals to 2, 2 and Eigenvectors will

become U 1 equals to 1, 0 and U 2 equals to 0, 1. So, here my matrix U comes out to be

1, 0, 0, 1. Now, my sigma 1 will become root 2 and sigma 2 also become root 2 because

they are the square root of the Eigenvalues of A into A transpose.

Now, I am having a equals to USV transpose, where what I am having where U and V

are orthogonal matrices. So, if I premultiply by U transpose I will be having U transpose

A equals to S into V transpose. So, by this lesson what I can write so, in a more better

way I can have taking the transpose of both side A transpose into U will become V into S

transpose. So, from here I can write v i equals to that is the column of V A transpose u i



upon  sigma i  from this  lesson because  column  wise  if  I  want  to  calculate  this  one

because S is a diagonal matrix. So, that will come in denominator.

So, now if I calculate v 1 from here v 1 will become a transpose into u 1 upon sigma 1.

So, A is given to you I can calculate a transpose into u 1 upon sigma 1. So, this comes

out to be 1 by root 2, 1, 0, 1, 0 transpose. From here if I calculate v 2 which will become

A T u 2 upon sigma 2 which comes out to be 1 by root 2, sigma 2 is root 2 into 0, 1, 0, 1

transpose as you know that V capital V is a 4 by 4 matrix. So, there will be four columns

I have just calculated only two columns. So, I need to calculate two more columns.

So, if I am able to find out two more orthonormal vectors that is v 3 and v 4 such that the

set v 1, v 2, v 3 and v 4 makes an orthonormal set of Eigenvectors then my job will be

done. Please note that here I am not going by the classical process means finding the

Eigenvalue of it and then finding the Eigenvectors corresponding to each Eigenvalue, I

want to make a shortcut and that I have taken from this particular relation. So, I need to

choose two more vectors v 3 and v 4 such that they makes an orthonormal set. So, if I

choose v 3 equals to 1 by root 2 1, 0, minus 1, 0 transpose and v 4 is 1 by root 2 so, 0, 1,

0, minus 1 transpose then you can see that v 1, v 2, v 3 and v 4 are orthonormal and this

can serve the purpose of columns of the matrix V.

So, here my matrix V comes out to be 1 by root 2. So, this I am writing this vector is the

column 0, 1 by root 2, 0, then this will become 0, 1 by root 2, 0, 1 by root 2 then this will

be 1 by root 2, 0, minus 1 by root 2, 0 and then this will be 0, 1 by root 2, 0 minus 1 by

root 2. So, hence clearly V is an orthogonal matrix. Now, only thing left to write the

matrix S. So, as I told you in this case S will be of since my original matrix of size 2 by

4. So, x will be of size 2 by 4 and it will be the Eigenvalue means root 2, 0, 0, root 2 and

then 2, 0 columns as I told you in the definition of full SVD.

So, here I am having my U, S and V and here matrix a will be equals to USV T, where U

is this one, S is this one and V transpose can be obtain from this V and A is this 1. So,

this  is  another  way  of  doing  singular  value  decomposition  without  computing  the

Eigenvectors of a bigger matrix, but here you have to choose these vectors very carefully

because this would make a pair a set of orthonormal vectors.
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So, there is a remark on singular value decomposition. For the positive definite matrix

means if A is a positive define matrix then SVD is identical to QSQ transpose. So, it is

identical to some sort of factorization or what I will say diagonalization. Basically it will

be diagonalization only
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Some facts about singular value decomposition if A is a real matrix of size m by n and

the singular value decomposition of a equals to USV transpose, where U is m by m

matrix, V is n by n both are orthogonal then rank of matrix A will be number of nonzero



singular values of A that is rank of S and that will be r. So, rank of A matrix will be the

number of nonzero singular values because singular values will be non negative. So, they

may be non nonzero or zero. So, number of nonzero singular values will be the rank of

the matrix A.

The column space of A is spanned by the first r columns of U that is the first r columns

of U will form a basis for column space of A. The null space of a is spanned by the last n

minus  r  columns  of  V, means  the  solution  of  the  system ax equals  to  0  that  is  the

homogeneous linear system will be given by the last n minus r columns of V and those

will be the columns corresponding to zero singular values the row space of a is spanned

by the first r columns of V. And similarly the null space of a transpose is spanned by the

last m minus r columns of U.

Hence, if you know the singular value decomposition of a matrix A. Then you can write

all the four fundamental subspaces of that particular matrix that is column space, null

space, row space and then null space of a transpose.

So, in this lecture we have learnt singular value decomposition. We have taken couple of

examples that how to do singular value decomposition of a matrix. In the next lecture,

we  will  find  out  a  relation  between  least  square  approximation  and  singular  value

decomposition. So, these are the references.

Thank you very much.


