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Lecture – 18
Inner Product Spaces

Hello  friends,  welcome  to  lecture  series  on  Matrix  Analysis  with  Applications. Our

today’s lecture is based on inner product. What inner product is and how we will see

some important properties of inner product also.

(Refer Slide Time: 00:38)

So, what are inner product let us see. So, let F be a field of real numbers or the field of

complex numbers and V be a vector space over F. An inner product on the vector space

V is a function which is denoted by this from V cross V to F satisfying the following

properties. So,  these are the four properties which have at inner product must be must

hold for every x, y, z in V and for every alpha in field. So, what are these four properties

let us see.
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The first property is the first property is inner product of x cross x is always greater than

equal to 0; and it is equal to 0 if and only if x is equal to 0 is a first property. The second

property is inner product of x and y is equal to inner product of y and x whole bar, where

bar is a complex conjugate. The third one is inner product of x plus y comma z is same

as inner product of x, z plus inner product of y, z. And the four property is the four

property is inner product of inner product of alpha x comma y is same as  inner  alpha

times inner product of x comma y where alpha is any scalar in field.

So,  if you have a function in which is defined like this from V cross V to F satisfying

these four properties then that product is called inner product. And that vector space

defined in which this inner product is defined is called inner product space.

Now, one important property which can be seen from the four property you see if you

take inner product of x comma alpha y so that will be equal to inner product of alpha y

comma x whole bar by second property. So,  this can be written as using this property,

this can be written as alpha time inner product of y x whole bar which is equals to alpha

bar inner product of y comma x whole bar. And this is alpha bar. And the inner product

the complex conjugate of this from the second property is equals to inner product of x

comma y. So, if this scalar is in the second with the second component, then it is alpha

bar; and if it is a first component, then it is alpha.
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Now, let us discuss first few examples based on this. The first example is the dot product

in R n. If we define a dot product in R n which is defined as this then this is a inner

product space defines the inner product. Let us see how.

(Refer Slide Time: 03:41)

You see you are taking V as R n and field as R ok. And if you take u as a 1 a 2 up to a n;

and V as b 1 b 2 up to b n, then the inner product of u and v is simply summation of a i b

i, i from 1 to n. Now, this can easily be shown you see. The first property is inner product

of u comma u. What are inner product u comma u, it is summation i from 1 to n a i into a



i, which is simply summation i from 1 to n a i squares or a 1 square plus a 2 square up to

a n square and that is always greater than equal to 0.

And this inner product is equal to 0 if and only if you see if it is equal to 0, this implies

sum of a i is equal to 0. And this implies a i equal to 0 for all i; a i equal to 0 for all i.

And this means u equal to 0. And of course, if u equal to 0, then this  implies inner

product of 0 comma 0 is of course 0 by this definition. So, the first property holds.

Now, for second property you can see inner product of u comma v if you write it is a 1 b

1 plus a 2 b 2 and so on up to a n b n, this can be written as b 1 a 1 plus b 2 a 2 and so on

up to b n a n. So, this is same as inner product of v comma u, because we are talking in

real space I mean real field is a real vector space so bar is itself.

Now, the third property is third property is inner product of u comma v comma u plus v

comma w is equals to you can see if you if you take w as c 1 c 2 up to C n then this will

be equals to summation i from 1 to n it is a i plus b i times c i by this definition which is

summation over i a i c i plus summation over i b i c i. And this is equal to inner product

of u and w plus inner product of v and w. So, third property also holds.

Now, the fourth property is inner product of alpha times u comma v is equal to  this is

summation i from 1 to n. So, it is alpha times a i b i as you can already see. And this is

equals to alpha times summation i from 1 to n a i b i which is equal to alpha times inner

product of u comma v. So, hence we have seen that all the four properties hold over this

definition when we define the inner product by this. All the four properties hold. So, this

defines inner product. And the vector space over which this inner product is defined we

are calling that vector space as inner product space.

So, there may be some other ways also to define the inner product over R n, this is this is

one of the way we are defining the inner product between u and v. Now, if you take C n I

mean vector space as C n over the complex field then the inner product may be defined

like this. This is again formed an inner product this can easily be verified.
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You see we are taking V as C n and field as C. Now, inner product of u and V for any u

V n C n is defined like this i from 1 to n; it is u i’s v i’s bar conjugate of this.  We are we

are taking u as u 1 u 2 up to u n and v as v 1 v 2 up to V n.

So, the first property is that inner product of u comma u it is equals to summation over i

u i into u i bar which is summation over i mod of u i squares. This means mod of u 1

square plus mod of u 2 square and so on up to mod of u n square. So,  this is always

greater than equal to 0 for all u. Now, if this is equal to 0 this implies mod of u 1 square

plus and so on mod of u n is equal to 0 and this implies mod of u n is equal to 0 for all i

and this implies u i equal to 0 for all i and; that means, u equal to 0. Now, if u equal to 0

of course, inner product of 0 comma 0 is 0 so, the first property holds.

Now, for second property inner product of u comma v if you take is summation i from 1

to n u i v i bar which can be written as summation i from 1 to n v i u i bar whole bar. And

this is inner product of v comma u whole bar. So, second property also holds.

Now, the third property is summation inner product of u plus v comma w that is equals to

summation u i plus v i into w i bar over i where we are taking w as w 1 up to w n.  So,

this is summation over i u i w i bar plus summation over i v i w i bar; and this is inner

product of u and w plus inner product of v and w.



The fourth property is inner product of alpha u and w is equals to summation over i alpha

u i into w i bar which is equals to alpha times summation over i u i w i bar, which is

alpha times inner product of u and w. So, we have shown all the four properties over this

definition that means, this defines an inner product over the over the complex over C n

over the complex field.

(Refer Slide Time: 10:39)

Now, similarly we can go for the third problem that if we define a vector space, if we

define if we take a vector space of all real continuous functions on the interval on the

close interval a to b, and we defined as the product as integral a to b f t g t d t then this

defines an inner product very easy to show. Because you can simply see that if you take f

and f inner product f and f then which is simply x square f square from a to b which is

always greater than equal to 0 for every f. And if f inner product of f and f is equal to 0

that means, integral a to b f square equal to 0 and that is true only when f equal to 0. So,

the first property holds.

Now, when you take inner product of f and g or g or f both are same because f t into g t is

same as g t into f t. Now, inner product of f plus g comma h if you take f plus g into h so

that property the third property can be directly obtained. And alpha times f comma g is

you can simply take alpha outside the integration. And we can get the four property also.

So,  these definitions define inner product on the vector space C of close interval a b.

Now, if you take this example, we considered all the matrixes all the real matrices of



order m cross n over the real field, and this defines the inner product. How it is defined

inner product let us see.
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So, here we are taking vector space as all matrix of order m cross real matrix of order m

cross n and field as real. And inner product between matrices A and B we are defined as

trace of trace of B transpose A which is simply summation over i summation over j a i j b

i j. Now, the first property is that inner product of A and A inner product of A and A

means trace of A transpose A which is which means summation over i summation over j

a i  j  whole square that  is always greater equal  to 0 of course,  because some of non

negative quantities.

Now, inner product of A comma A is equal to 0 implies summation i summation j a i j

whole square equal to 0 and that is true only when a i j equal to 0 for all i and j and that

means  matrix  A itself  is  0. And again  if  matrix  A is  0  the definition  trivially  holds

because it is inner product of 0 and 0  that means,  trace of 0 transpose 0 which is of

course, 0. So, the first property holds.

Now, if I take the second property that is A and B which is same as trace of B transpose

A which is given by a summation i summation j a i j b i j if we this can be written as

summation over i summation over j b i j a i j. So, we can easily write with a trace of A

transpose B which is inner product of B and A.



Now, a third property is inner product of A plus B and C which is same as trace of trace

of  C transpose  A plus  B  by the  definition  which  is  trace  of  C transpose  A plus  C

transpose B. And this can be written as by the property of trace the trace of C transpose

A plus trace of C transpose B, which is inner product of C and with inner product of a

and c sorry a and c and the plus inner product of b and c. So, third property also holds.

Now, for the last property it is trace of inner product of alpha A comma B is equals to

trace of B transpose alpha A which can be written as summation over i summation over j

here a will we will replace a i j by alpha times a i j. So, alpha times a i j because all you

are multiplying A with alpha. So, it is b i j. This can be written as alpha times summation

over i summation over j a i j b i j. And this will be alpha times trace of B transpose A or

alpha times inner product of A and B. So, hence we can say that all the four properties

holds over this definition that means, this defines an inner product for this vector space

over this field. So, these are the few examples of inner product.

(Refer Slide Time: 15:57)

Now, when we can say that two vectors are orthogonal,  so  two vectors are said to be

orthogonal  if  the inner product of between them is 0. Then we say that  u and v are

orthogonal. Now, let us see this problem consider vectors u equal to this v and w. So, the

first problem is u orthogonal to v and w. So, you see here we are defining inner product

as a standard inner product that may a dot product. If nothing is given that means we are

taking the inner product as the dot product of the two vectors.



So,  what  a dot product of u and v it  is 1 plus 2 is 3 minus 3 is 0  that means,  u is

orthogonal to v it is clear. Now, is u is orthogonal w also. So, let us see; 1 into 1 is 1; 1

minus 4 minus 4; 1 minus 4 is minus 3 plus 3 is 0. So, yes, it is orthogonal to w also. So,

the first part the also the first part is yes.

Now, is v orthogonal w?  So,  to see that v is orthogonal to w try to find out the inner

product of v and w; and if it is equal to 0; that means v is orthogonal to w. So, see here 1

into 1 is 1; 2 into minus 4 is minus 8; and 3 into minus 3 is minus 9, it is not equal to 0

clearly. So, v is not orthogonal to w. Now, find a nonzero vector w that is orthogonal to u

1 and also u 2.
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So, what is u 1 and what is u 2. Here u 1 is it is 1, 2, 1; and u 2 is it is 2, 5, 4. So, we have

to find a  nonzero vector  w which is  orthogonal  to  w is  orthogonal  to  u 1 and w is

orthogonal to u 2 also that means the inner product of w and u 1 and inner product of w

and u 2 is equal to 0. So, so a vector which is orthogonal to these two vector is simply

the cross product of these two. You simply find the cross product of these two that is will

be a w which is orthogonal to these two vectors. So, how to find w, so w will be simply

you find the cross product of these two cross product of these two will be i j k, it is 1 2 1

2 5 4. So, it is i cap times 8 minus 5 is 3 minus j cap time it is 4 minus 2 is 2 plus k cap

times it is 1.



So, we can say that w is simply 3 minus 2 1 you can you can check also you see 3 into if

you take the inner product of w and u 1. So, what are the inner product it is 3 minus 4

plus 1 which is 0. Inner product of w and u 2 is it is 6 minus 10 plus 4 which is again 0 of

course, it will be because it is the cross product of these two vectors and hence w will be

orthogonal to these two vectors. Or though other way out is in fact in fact any alpha time

this vector 3 minus 2 1 will be orthogonal to u 1 and u 2 both. Now, how you define

orthogonal complements.

(Refer Slide Time: 19:39)

Let S be a subset of an inner product space V the orthogonal complement of S denoted

by S perpendicular consists of all those vectors in V that are orthogonal to every vector

of  u  belongs  to  S  u  is  a  subset  of  inner  product  space  V. So,  this  is  a  orthogonal

compliment of S which is given by all those v in V such that inner product of v and u is 0

for every u in S. In particular, for a given vector u belongs to V, we have orthogonal

compliment of u as that V which is orthogonal to u collection of all those V which is

orthogonal  to u. Now, the first  property of this  orthogonal  compliment  is  that  it  is a

subspace of V.
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So, how we define orthogonal complement orthogonal compliment is basically a subset

of vector space V which is defined as all those v in V such that inner product of v and u

is equal to 0 for all u in S S is a subset of V. Now, in order to show that this is a subspace

of this vector space V let v 1 v 2 in S orthogonal compliment and alpha belongs to field.

And we have to show that alpha v 1 plus v 2 also belongs to S complement. This to

prove to show that it is a it is a subspace we have to show that this also belongs to

orthogonal compliment of S.

So, how we will show this? So, let us try to find out the inner product of this with any u,

any u in s for any u in s. Now, this is equals to by the definition of inner product, this is

this u plus v 2 comma v 2 comma u. Again this is alpha times inner product of v 1 u plus

inner product of v 2 u. Now, since u v 1 and v 2 are in orthogonal compliment of S, so

this is 0 and this is 0 for any u. So, this is equal to 0. So, we have shown that alpha v 1

plus v 2 belongs to orthogonal complement of s and that means orthogonal complement

of S is a subspace of S of V.
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Now, we have few geometric interpretations of a complement orthogonal complement.

Suppose that u is a nonzero vectors in R 3 then orthogonal complement of a vector u is a

plane in R 3 passing through origin and is perpendicular to the vector u. You see what is

what is an orthogonal compliment orthogonal compliment of element are all those V in V

such that orthogonal.
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Ah inner product of v and u is equal to 0 is equal to 0. So, how we can how we can see

geometry geometrically. So,  geometrically it is simply it is simply all the planes it is



something like plane you see we have to find out V. All the planes which are passing

through origin because it is equal to 0 and perpendicular to u it is very clear from the

definition itself.

Now, now  let  the  second  one  is  let  W be  a  solution  of  a  space  of  an  m  cross  n

homogeneous system of equations A X equal to 0. Suppose, for this equation for this

system equations the solution space is W ok, where A is a matrix a i j and X is a column

vector x i. Then each solution w which is given by x 1, x 2 up to x n is orthogonal to

each row of a and hence w the kernel space of the linear mapping a from R n to R m is

the orthogonal complement of the row space of A. You see here we have matrix of order

m cross n and x is a column vector of order n cross 1.

You see here we are having A into X A is a matrix  a 1 1 a 1 2 and so on up to a 1 n.

Similarly, a n 1 a n 2 and a m 1 a m 2 a m n and here it is x 1 x 2 up to x n equal to it is 0

0 0. What does this mean this means that when you multiply this row with this column it

is equal to 0. The second row with this column is equal to 0; the third row with this

column is equal to 0. So, what does it mean this means that that every row every row is

orthogonal to this that is that is what is it  is here that each solution each solution is

orthogonal to each row because the inner product of row and the x i is 0.

So, each solution is orthogonal to each row and hence W is orthogonal complement of

the row space of A. So, this W which is a solution space of this is simply the orthogonal

complement of row space of A, row space is a space generated by the rows of A. So, this

is all about inner product space. So, in this lecture, we have seen that what inner product

space is and what are the properties of inner product. We have also seen that if a set is

known to you then how we can find out orthogonal complement of that S.

Thank you.


