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Hello friends.  So,  welcome to lecture series on Matrix Analysis with applications.  So,

today we will discuss about a Special Matrices ok. What is special matrices are and how

we can find out eigen values of special practices, what are the important characteristic

properties they are having. 

So, first matrix is symmetric matrix. 
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So, a square matrix A of order n  is said to be symmetric  if A is equal to A transpose,

transpose  means  you  interchange  rows  and  columns  and  if  interchanging  rows  and

column the matrix will remain unchanged; that means, matrix is symmetric. Then we say

the matrix is symmetric for example, you see this matrix, if you interchange rows and

columns ok. So, this matrix is you can find that A transpose is equal to A, if you see this

matrix. So, these two elements are not same, that is A is not equal to A transpose here, so

this matrix is not symmetric. So, we can always construct a symmetric matrix like this.
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Suppose you are having A matrix you can arbitrary put any diagonal elements, if it is 4

here, 4 here  5  here, 5 here  say 7  here  minus 7 here minus 7 here. So,  if you find its

transpose so, it is always 1 4 5, you interchange these rows and columns 4 2 minus 7, 5

minus 7 3. So, you can see easily see that A transpose is equal to A. So, we can say that A

is a symmetric matrix ok. 
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Now, what are the properties of symmetric matrices?  Any real symmetric matrix, real

means all entries are real ok, has only real eigenvalues.
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Suppose matrix is symmetric that is A is equals to A transpose and matrix of order n

cross n. Now, we know that many matrix A, matrix may have complex roots also. I mean

complex eigen values also,  but if it is a real symmetric matrix  it  always have only real

eigen values, how we can prove it? So, the proof is simple you can see here. 

Let us suppose A X equal to lambda X and X is not equal to 0 ok. So, that means, A as an

eigen value lambda and the corresponding eigen vector is x. Now, you take bar both the

sides, bar means conjugate, how you can find the conjugate of a matrix? You simply find

conjugate of each element of the matrix that will be A bar and is equal to lambda bar X

bar, you can take conjugate both the sides, now you take transpose both the sides. So, it

is  conjugate whole transpose is  equal to lambda bar  X bar  whole transpose.  So, this

implies X bar transpose, A bar transpose is equal to lambda bar X bar transpose lambda

is a, lambda bar is a scalar. So, it is transposes will be itself. 

Now, since A is a real matrix so, A bar will be itself. So, we can write is equal to X bar

transpose A is equals to lambda bar X bar transpose ok. A A transpose and A transpose is

A because A is symmetric. So, this implies X bar transpose A is equals to lambda to the

bar X bar transpose. Now, you have to multiply both side by a post multiply both sides

by a vector X. So, this is X bar transpose A X is equals to lambda bar X bar transpose X.



Now, this A X is lambda X this we have already taken. So, it is lambda X lambda bar

transpose lambda X lambda bar X bar transpose X. So, this implies lambda can be taken

out. So, lambda minus lambda bar times X bar transpose X is equal to 0. 

Now, if X is this vector x 1, x 2 up to x n then X bar transpose will be x 1 bar, x 2 bar and

so on up to x n bar. And what will be X bar transpose X? This will be mod X 1 square

because X 1 bar into X 1 which is mod X 1 square plus mod X 2 square and so on up to

mod x n square. And it is not equal to 0 since X is not equal to 0. It will be 0 only when

all X i’s are 0 and all X i equal to 0 means X equal to 0, but X is not equal to 0. So, that

mean this is not equal to 0. 

Now, this is not equal to 0 this means lambda minus lambda bar is equal to 0 because

product of these two is equal to 0. So, this implies lambda equal to lambda bar and if

number and is equal to its conjugate; that means, lambda is purity real, lambda is real.

So, we have taken an arbitrary lambda for an symmetric matrix A and we have shown

that lambda is real; that means, all eigen values are real for a symmetric matrix. So, this

is a first property of symmetric matrix that eigen values are always real. 

The next  property  is  it  is  always diagonalizable;  that  means,  if  you have a any real

symmetric  matrix A then you can always find an invertible matrix p such that AP is

equals to PD, if A is symmetric always. Next is it has orthogonal eigen vectors, by using

the second property is it easy to show you see because we note that every symmetric

matrix is always, every real symmetric matrix is always diagonalizable.
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That  means  if  A  is  a  real  symmetric  matrix  then  A  is  diagonalizable,  always

diagonalizable  ok.  Now, that  means,  this  implies  there  exist  an  invertible  matrix  P,

invertible matrix P such that, such that A P equal to P D or A is equals to P D P inverse.

Where D, D are the these is are the diagonal values of I mean eigen values of a which are

all real this we have already seen because a is symmetric ok. 

Now, you can take transpose both the sides because A is symmetric.  So, it  is P D P

inverse whole transpose, this is equal to A A transpose is equal to a because A is real

symmetric matrix and it is p inverse transpose D transpose, P transpose. It is P transpose

whole inverse D transpose is D itself because it is a diagonal matrix and it is P transpose

and A is nothing, but P D P inverse. So, it is P D P inverse is equal to this. So, from here

we can conclude that one of the, one of the conclusion from here is P inverse is equals to

P transpose or P transpose P is equal to identity ok. 

Now, now what is P? P is simply a matrix of eigen vectors, we have already seen the

construction of such P’s. So, what is P? P is a simply X 1, X 2 up to X n these are eigen

vector corresponding to lambda 1, lambda 2 up to lambda n. So, what is P transpose P, it

will be it will be X 1 in this row, X 2 in this row up to X n in this row and this is X 1 in

this column and so on up to X n in this column ok. 

So, what is it is equal to, you see this row this column, when you multiply this row this

column this is nothing, but norm of X 1 square ok. When you multiply this row with this



column, this will be nothing, but X 1 transpose X 2 and similarly it is X one transpose X

n X n transpose X 1 X n transpose X 2 and. So, on up to X n norm square and this is

equal to identity, this we have shown this equal to identity means all norms of all the

vectors I is equal to 1 and all other entries are 0; that means, that means, eigen vectors

are orthogonal in fact, orthonormal ok.
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It simply means that X i transpose X j is equal to 0 if i not equal to j and it is 1 when i

equal to j. So that means, this set X 1, X 2 up to X n this set is orthonormal. So, hence we

can say that they has orthogonal eigen vectors or if it is orthonormal then it is orthogonal

also  ok.  So,  these  are  the  properties  of  similar  matrices.  Now,  next  is  and  skew

symmetric matrix. 
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A square matrix a of order n is said to be skew symmetric matrix if A transpose is equal

to minus A ok. Suppose you see this matrix, if you take A transpose of this matrix it is

simply equal to minus of A so, hence this matrix is a skew symmetric. However, this

matrix is not a skew symmetric because when you take minus A transpose it is not equal

to  minus  of  A for  this  problem,  minus  of  B  ok.  So,  what  are  properties  of  skew

symmetric matrix let us see. 
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Now, for a skew symmetric A transpose is equals to minus A, A is n cross n is skew

symmetric ok. 

Now, if A is skew symmetric the first property is, that if n is odd order of the matrix is

odd that determinant of A is 0, if A is skew symmetric. Proof is simple you can see here

A transpose is  equal  to  minus A this  implies  determinant  of  A transpose is  equal  to

determinant of minus A. This implies determinant of A transpose is same as determinant

of A and determinant of minus 1 minus minus times A is minus 1 raise to power n into

determinant of A. So, if n is odd then minus 1 raised to power n will be minus 1. So,

determinant of a will be minus determinant of A and this imply determinant of A is equal

to 0. 

So, the first property is that a skew symmetric matrix of odd order has 0 determinant or

any  skew symmetric  matrix  of  order  odd,  of  odd  order  is  always  singular  the  first

property. Now, second property is, a skew symmetric matrix all the eigen values of a

skew symmetric matrix are either 0 or purely imaginary how we can prove this. So, let us

see the proof. 
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Now, A transpose is equals to minus A, A is n cross n a skew symmetric matrix. So, A X

equal to lambda X, take a X equal to lambda X X is not equal to 0, again take bar both

the sides, take transpose both the sides. So, taking transpose we get this expression ok,

now since A is a we are we are taking a as a real skew symmetric matrix for this case. So,



X bar transpose it  is  A, A transpose lambda bar X bar transpose,  this implies X bar

transpose A transpose is minus A. So, it is minus of A is equals to lambda bar X bar

transpose post multiply both side by vector X, this implies A X equal to lambda X you

can substitute here and this implies lambda bar plus lambda times X bar transpose X is

equal to 0 and X bar transpose X is not equal to 0 this we have already showed in the last

proof. So, as X bar transpose X is not equal to 0. So, this implies lambda bar plus lambda

is equal to 0 or lambda is equals to minus lambda bar and this implies either lambda

equal to 0 or purely imaginary ok. 

So, for a real skew symmetric matrix eigen values are either 0 or purely imaginary. So,

these are second property for a skew symmetric matrix ok. 
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So, the property is here the elements of the main diagonal of a skew symmetric matrix

are 0 and therefore, its trace is also 0. This is very easy to show, you see that if A matrix

has skew symmetric matrix then a ii that a diagonal element diagonal element a 11, a 22,

a 33 and so on. 
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It will be equal to minus of a i i because A transpose equal to minus of a for all i and this

implies a ii equal to 0 for all i. This means diagonal elements of a skew symmetric matrix

are all are all 0 and hence the trace is also 0 because trace is nothing but sum of diagonal

elements. 

The next property we have shown that each eigen value of a real symmetric matrix A is

either 0 or purely imaginary. Now, if a is a real symmetric matrix then determinant of A

is always greater than or equal to 0, this is again easy to show because they have shown

that eigen values of eigen values of skew symmetric matrix, real skew symmetric matrix

either 0 or purely imaginary ok. If one of the eigen value is 0 so determinant will be 0

because determinant is nothing, but product of eigen values ok. So, A has eigen values

like 0 plus minus alpha i plus minus beta i like this, the eigen values of a if a is a skew

symmetric matrix. 

So, if 0 is one of the eigen value then the product will be 0; that means, determinant is 0,

if 0 is not an eigen value suppose eigen values are plus minus alpha i plus minus beta i

types. So, if 0 is not the eigen value of a matrix skew symmetric matrix a then the eigen

values are of the are of the types plus minus alpha i plus minus beta i plus minus gamma

i or so on and determinant of a will be nothing, but product of eigen values. 

So, if you multiply these two it will be alpha i minus alpha i. So, product will be alpha

square, similarly product of these will be beta square product of these will be gamma



square. So, product of I mean eigen values will be something like this. So, we can see the

determinant of A will be greater than or equal to 0 because complex roots always exist in

pairs, any real skew symmetric matrix of order of odd order has determinant 0 that we

have already seen. 
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Now, Hermitian matrix a complex square matrix A is said to be Hermitian if it is equal to

its own conjugate transpose, that is A, A conjugate transpose is equal 2 A. So, let us see

this example suppose it is. For the Hermitian matrix we have seen that a, we have seen

that it is. 
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A conjugate transpose is equal to A, the first most property for this matrix is you see that

a ii which are diagonal elements conjugate should be equals to a ii for all i.  So, this

implies a ii for all i’s are real. 

So, the first most property of Hermitian matrix is that the diagonal elements must be real,

it is a complex matrix, but for Hermitian matrix all diagonal elements must be real. So,

you take this example suppose it is 1 it is 2 plus 3 iota, it is 2 minus 3 iota and suppose 4.

When you take the conjugate of this conjugate is 1 conjugate is 1, conjugate of this is 2

minus 3 iota conjugate of this 2, 3 iota and 4. Now, when you take transpose of this, it is

1 2 minus 3 iota row will go to column 2 plus 3 iota and 4. So, which is equal to A So,

we can say that this matrix is a Hermitian matrix. 

Now, the next property of Hermitian matrix is all eigen values of Hermitian matrix are

real, the proof follows on the same lines as we did for symmetric matrix, you take a X

equal to lambda X the proof is same, you can see. 
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Here we are having a bar transpose equal to A ok. So, AX equal to lambda X you can

take here, X a is not equal to 0 take bar both the sides. Take transpose both the sides and

replace a bar transpose by A, X bar transpose a is equals to lambda bar, lambda bar

transpose it  is  X bar transpose a X equals to lambda bar, X bar transpose X, X bar

transpose it is lambda X and it is lambda bar X bar transpose x. So, this implies lambda

minus lambda bar into X bar transpose X equal to 0 and say this is not equal to 0. So, this

implies lambda equal to lambda bar. So, hence all eigen values of Hermitian matrix are

real. 
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So, the properties are of Hermitian matrix is the diagonal element of Hermitian matrix

are necessarily real, all eigen values of Hermitian matrix of order n are all real. Now, the

inverse of a invertible Hermitain matrix is also Hermitian ok, you can see the proof is

very easy you see here a trans a conjugate transpose is equal to a because A is Hermitian.
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We have to show that  if  A,  if  this  matrix  is  invertible  if  this  matrix  A is  invertible,

determinant  of  A is  not  equal  to  0  then  A inverse  is  also  Hermitian.  So,  A inverse

Hermitian means for A inverse also for if B is A inverse then B bar transpose is also

equal to B this we have to show. 

So, you can take B bar transpose, B bar transpose is A inverse whole bar and transpose

which is same as A bar inverse whole tend to transpose which is same as A bar transpose

whole inverse. This is by the properties of matrices and A bar transpose is A because A is

Hermitian. So, this is A inverse and this is nothing, but B. So, we have shown that B is

equal to b bar transport; that means, inverse of a Hermitian matrix if A is invertible is

also Hermitian. 

Now, the product of two Hermitian matrices A and B is Hermitian if and only if A B is

equal to B A and thus A raise to power n is Hermitian, if A is Hermitian n is a positive

integer. So, let us try to prove this, the second proof is follows on this. So, product of two

Hermitian matrix is Hermitian this we have to show if and only if AB equal to BA. 
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So, let us let us take A and B two Hermitian matrices ok, two Hermitian matrices, that

means, A bar transpose equal to A and B bar transpose equal to B. 

So, we have to show that A B, A B, A into B is also Hermitian if A B equal to B A. So, let

us take this whole transpose and try to show that if A B equal to B A then this is equal to

A B. So, this  is  equals  to A bar, B bar whose transpose and this  is  equals to B bar

transpose A bar transpose and this is equals to B into A because A and B are Hermitian

matrices and A B is equals to B A. So, this is equals to A B. So, we have shown that

product of two Hermitian matrices is also Hermitian if A and B, if A B equal to B A.

Similarly, we can show that b a whole bar is transpose is equals to B A, same lines. 

Now, the converse part, now let us suppose this is Hermitian that is this is equal to this

and we have to show that A B equal to B A the second part. So, to show this part, so this

implies A bar, B bar whole transpose is equals to A B and this implies bar transpose A bar

transpose is equals to A B and B bar transpose is B and this is A. So, it is equals to A. So,

we have shown that this is equal to this. 

So, hence we can show, hence we can if you substitute B equal to A, then A square I

mean A square is always equal to A square; that means, A square is also Hermitian if A is

Hermitian. And similarly A cube, similarly A raise to power 4. So, this proof again is

simply get so; that means, if A is Hermitian then any power any positive power of A is

also Hermitian. 
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Now,  for  a  skew  Hermitian  matrix  a  matrix  with  complex  entries  is  called  skew

Hermitian if, A conjugate transpose is equal to minus of A. So, what are the properties of

skew Hermitian matrices?. 
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You see here A bar transpose is equals to minus A; that means, first of diagonal elements.

So, this is equals to minus of a a ii for all i and this means a i i i other, a i i for all i are

either 0 or purely imaginary ok. The first most point for a skew Hermitian matrix the first

property. 



The second property is all eigen values of the skew Hermitian matrices are either 0 or

purely imaginary, the proof we can easily obtained ok, following the same as we did for

a skew symmetric matrix ok. 

(Refer Slide Time: 25:11)

Next is if A is a skew Hermitian matrix then iota A and minus iota A are Hermitian. So,

this is used to show you see A is a skew Hermitian that means this is equals to minus A.
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You take B 1 is equals to iota A and B 2 is equals to minus iota A. So, if it  is B 1

conjugate  transpose.  So,  it  is  minus  iota  whole  conjugate  transpose.  So,  it  is  iota



conjugate and A conjugate whole transpose. So, conjugate of iota is minus iota and it is A

bar transpose and A bar transpose is minus A because A is a skew Hermitian it is given to

us. So, it is iota A which is B which is B 1. So, we have shown that B 1 is Hermitian

matrix. 

So, similarly we can proceed for B 2 if you take B 2 bar transpose so, it is minus iota A

bar transpose. So, this is minus iota bar A bar transpose, minus iota bar is iota and this is

A bar transpose is minus of A because A is skew hermitian. So, it is equals to minus of B

2. So, it is equal to B 2. So, we have shown that B 2 is Hermitian matrix. So, if A is skew

A is I mean Hermitian, A is skew Hermitian then iota A and minus iota A’s are Hermitian

matrices. 

So, here we have seen some of the important matrices like symmetric matrices, skew

symmetric  matrix,  Hermitian  matrix  and skew Hermitian matrices  and we have seen

some of the important properties of these special matrices. In the next lecture we will see

some more special matrices like orthogonal matrices, unity matrices etcetera and their

properties. 

Thank you. 


