Ordinary and Partial Differential Equations and Applications Dr. P. N. Agrawal Department of Mathematics Indian Institute of Technology – Roorkee

Lecture – 35 Surfaces Orthogonal to a given system of surfaces

Hello friends! Welcome to my lecture on surfaces orthogonal to a given system of surfaces. We know that angle between any 2 surfaces at a point of intersection is the angle between their respective tangent planes at that point. Now let us say suppose we are given a 1 parameter family of surfaces we can write its equation as $f(x, y, z) = C$, where C is a parameter. Our aim is to find a system of surfaces which cut each of these surfaces at right angles or you can say which cut each of the given surfaces orthogonally.

(Refer Slide Time: 01:10)

Definition: Angle between two surfaces at a point of intersection is the angle between their respective tangent planes. Suppose a one parameter family of surfaces is given by the equation $f(x, y, z) = c$, (1) 'c' being a parameter. We shall find a system of surfaces which cut each of these given surfaces at right angles. The normal at any point (x, y, z) to the surface (1) has direction ratios graaf = $\nabla f = \hat{r} f x + \hat{j} f y + \hat{k} h$ $\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$

Now we know that if we are given a surface $f(x, y, z) = C$, then gradient of f and gradient of f is a vector normal to the surface. Okay a gradient of f is if $x + jfy + kfz$. Okay. So the normal at any point (x, y, z) to the surface $f(x, y, z) = C$ has direction ratios fx, fy and fz. **(Refer Slide Time: 01.33)**

Assume that the surface $z = g(x, y)$ cuts each surface of the given system

orthogonally. At the point (x, y, z), its normal has direction ratios $\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, -1\right)$.

Since both the surfaces intersect orthogonally, at the point of intersection (x, y, z) their respective normal are perpendicular. (x, y, z) their respective normal are perpendicular.

Therefore
 $\frac{\partial f}{\partial x} \frac{\partial z}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial z}{\partial y} - \frac{\partial f}{\partial z} = 0$
 $\frac{\partial f}{\partial x} \frac{\partial z}{\partial y} + \frac{\partial f}{\partial y} \frac{\partial z}{\partial y} = 0$

which is a quasi-linear PDE.
 $\frac{2}{3}z = \frac{9}{3}x,$

Let us assume that the surface $z = g(x, y)$ cuts each surface of the given system orthogonally. We can write $z = g(x, y)$ as let us write $f(x, y, z) = g(x, y) - z = 0$. Then the surface $f(x, y, z) = 0$, has normal with direction ratios. The direction ratios of the normal to the surface $f(x, y, z) = 0$ are given by $f(x)$, $f(y)$, $f(z)$. Now $f(x)$ is equal to the derivative of g with respect to x, $f(y)$ is equal to derivative of z derivative of g with respect to y and partial derivative of f with respect to z is - 1.

Now let us note further that $z = g(x, y)$ gives the partial derivative of z with respect of x as, $g(x)$ and partial derivative of z with respect to y as, $g(y)$. Okay so hence from these equations we get, the partial derivative of f with respective of x as, derivative of g with respect to x which is $z(x)$ and similarly partial derivative of f with respect to y, which is derivative of g with respect to y and derivative of g with respect to y is $z(y)$ and partial derivative of f with respect to z is - 1 Okay.

Now let as look at this equation since both the surfaces $z = g(x, y)$ and given surface intersect orthogonally at the point of intersection (x, y, z) the respective normal are perpendicular. So we must have $f(x) * z(x) + f(y) * z(y) - f(z) = 0$. And this equation is a quasilinear PDE because we can write it as this equation.

This equation can be written as $*$ p, $*$ p derivative of f with respect to x $*$ p derivative of f with respect to y $*$ q = derivative of f with respect to z. So f(x) is the partial derivative of f(x, y, z)

with respect to x which we can find from the given equation of the surface and this is $f(y)$ (x, y, z) $*q$ = then this is partial derivative of f(x, y, z) with respect to z. So this equation can be interpreted as a first order PDE $f(x) * p + f(y) * q = f(z) * f(z)$.

(Refer Slide Time: 05:53)

Hence integral surfaces of PDE (2) are orthogonal to the given system of surfaces (1) i.e. the integral surfaces orthogonal to (1) are generated by integral curves of the equations

$$
\frac{dx}{\partial f} = \frac{dy}{\partial f} = \frac{dz}{\partial f}.
$$

Hence the integral surfaces of the equation 2 are orthogonal to the given system of surfaces that is they are given by equation 1. Now thus the we can say the integral (0) $(06:04)$ curves orthogonal to 1 are generated by the integral surfaces orthogonal to 1 are generated by the integral curves of the characteristic equations dx/fx, dy/fy, dz/fz. This follows from the (()) (06:23) this equation is a quasilinear PDE.

(Refer Slide Time: 06:30)

Now, let us consider so we then, then we will solve this characteristic system to arrive at the integral surfaces that are orthogonal to 1. So let us now consider a system of surfaces given by x square + y square + z square=cxy, where, c is a parameter. So we shall first write it in the standard form, $f(x, y, z) = c$. Okay so if you want to write it in that form, then if $f(x, y, z) = c$, then f(x, y, z) will be = x square + y square + z square/xy. Okay now let us find the partial derivatives of f with respect to x, y, z.

So f(x) is equal to now this is what? X square/xy. I can write it as x/y . Then y square/xy, I can write it as y/x and z square/xy I will write just like that. Okay. So what I will get when I differentiate it partially with respect to x. I get 1/y and then partial derivative with respect to x will give – y/x square. Here partial derivative with respect to x will give z square/ $1/x$ gives – $1/x$ square so – x square y. So this is $1/y - y/x$ square – z square/x square y. This is partial derivative of f with respect to x.

Then partial derivative of f with respect to y, we can write so $-x/y$ square and then here we get $1/x$ here we get with respect to y so $-z$ square/xy square. Partial derivative of f with respect to z is = this, this is 0, this is 0 here we get $2z/xy$. So the characteristic equations are dx/fx , dy/fy , dz/fz, which will give as fx = this. So dx/1/y -y/x square – z square/x square $y = dy 4$ fy. So – x /square + 1/x – z square/xy square = dz/2z/xy. This is what we get okay.

Now we can simplify this or so this here if you take LCM it is x square y, x square y will go up there. I can write x square y of dx/x square y when you multiply here you get x square, x square y so this is – y square and x square y is in – z square = here xy square we multiply in the numerator and denominator so xy square dy/xy square gives – x square here we get + y square and here we get $-z$ square and here what get xy $dz/2z$ okay.

Or I can write it as so canceling xy we get x dx/x square – y square – z square is = y $dy/-x$ square $+$ y square $-$ z square $=$ dz/2z. Okay from here what do you notice? This gives you, we multiply in the numerator by x in the numerator here by y here by z. We get x okay we write we multiply here y1, here y1 okay and then add z times here the time dz.

So x $dx + y dy$ okay + z dz is = 0. Because this is this is what? You can see this give this is = x $dx + y dy + z dz$ this is = x square – y square – z square – x square + y square – z square we are multiplying here by z so we get 2z square and the whole things cancels. So x $dx + y dy + z dz =$ 0.

Which implies x square/ $2 + y$ square/ $2 + z$ square/ 2 is a constant, a constant. So we can write x square $+$ y square $+$ z square $=$ some constant C1. Okay now let us find another solution of this and for that what we will do x $dx - y dy$, what do we get? x $dx - y dy$ will give you x square – y square – z square and we are subtracting this one so we get $+ x$ square – y square $+ z$ square = $dz/2z$ okay. So what you get x square x square okay and this z we will get z square z square cancel or this will give x $dx - y dy/2 * (x)$ square – y square) = dz/2z okay.

So this cancel with this and what do you get if you take x square – y square $=$ t. Then you have $2x dx - 2y dy = dt$. So this is = this gives you dt/2t okay. x dx – y dy dt/2. So dy/2t = dz/z okay or you can say ln t this 2 y I can multiply here so ln t is 2 ln z okay + some constant ln C2. So t is $=$ C2 z square or x square – y square = some constant C2 times z square okay so we get one solution as x square + y square + z square = C1 and other solution as x square – y square = $C2$ * Z2 square or we can say x square – y square/z square = $C2$.

And therefore the general system therefore the general solution is given by some function phi (x square + y square + z square and x square – y square/z square) = 0. Because we know that, if $u(x,$ y, z) = constant and $v(x, y, z)$ = constant are 2 independence surfaces of the characteristic equations, then general solution is phi(u, v) = 0. Then general integral is phi(u, v) = 0.

(Refer Slide Time: 15:53)

Then the general solution is

$$
\phi\left(\frac{x^2 - y^2}{z^2}, x^2 + y^2 + z^2\right) = 0
$$

So using this result okay the general solution of the given system is phi(x square + y square + z square and x square – y square/z square) = 0. So this is what we get, the solution okay. **(Refer Slide Time: 16:00)**

Example: Consider the system of surfaces given by the equation

$$
z(x + y) = c(3z + 1),
$$

'c' being a parameter. Find the surface which intersects the surfaces of the

Now let us go to another question where we take system surfaces given by the equation z^* (x + y) = c $*(3z + 1)$. C is a parameter. Now here we want to find particular surface okay, which intersects the surfaces of the given system orthogonally and passes through this curve okay. This curve is a circle which is given by the equations x square + y square = 1, $z = 1$. So this circle lies in the plane $z = 1$. So here let us write this equation in the standard form $f(x, y, z) = c$. So $f(x, y, z)$ $(z) = z * (x + y)/3z + 1.$

So f(x) let us find first here $f(x) = z/3z + 1$, $f(y)$ let us find which will also $z/3z + 1$ and when we find $f(z)$, what is $f(z)$? In the numerator, we have z, in the denominator also we have z. So let us differentiate in the y the quotient rule. So the derivative of this with respect to the z is $(x + y)*(3z)$ $+ 1$) – derivative the denominator is 3 $*$ 3 and then (()) (17:18) the numerator divided by (3z + 1) whole square. So what do we get? So this is $(x + y) * (3z + 1) - 3z$ so we get $(x + y)/(3z + 1)$ whole square okay.

So what do we get here? The characteristic equations are dx/fx that is $dx/z/(3z + 1)$, dy/fy which is $z/(3z + 1)$ and dz/fz which is $(x + y)/(3z + 1)$ whole square okay. Now taking the ratio first ratio and second ratio okay we have $dx/z * (3z + 1) = dy/z/(3z + 1)$ this gives you $dx/1 = dy/1$ when we take the first and second ratios. So this gives you $x = y + c1$ or $x - y = c1$ okay. Now let us from the characteristic equations 1, 1 imply that $dx/1 = dy/1 = dz (3z + 1)$ whole square/(x + y) and I multiplying by $z/(3z + 1)$. So I get this okay.

So this cancel with this and we have or $dx/1 = dy/1 = (3z \text{ square} + z) *dz/(x + y)$. This is what we get. Now this is further equal to multiply this by x, x dx. I multiply this by y, y dy and then multiply by it - 1. So – (3z square + z) *dz and in the denominator what we get $(x + y) - (x + y)$ so this cancel with this and what we get is? X dx + y dy = or – $(3z \text{ square} + z)dz = 0$. Now this will give you when we integrate this will give you x square/ $2 + y$ square/ 2 and then - z cube – z square/2 is equal to some constant okay.

Multiplying by 2 I get another solution x square + y square - 2z cube - 2z cube - z square = some constant. Let us say c2 okay. Now c1 is, so c2 is phi c1. Some constant c2 is phi c1 where c1 is an arbitrary function. So I can write it as phi of $(x - y)$ because $(x - y) = c1$. Now let us use the initial condition that is the curve we have to find the surface which passes through the circle so when the surface passes through the circle x square $+$ y square $= 1$.

So 1 and $z = 1$. So we get $1 - 2 - 1 = \pi$ phi of $(x - y)$ okay. So this is π $(x - y) = -2$ and therefore I get this required surfaces x square + y square - $2z - 2z$ cube - z square = - 2 or x square + y square $= 2z$ cube $+z$ square -2 that is the surface which passes through the circle x square $+ y$ square $= 1$ and the plane $z = 1$ and intersects the given surfaces orthogonally.

Then the required surface is given by

$$
x^2 + y^2 = 2z^3 + z^2 - 2.
$$

٥

So that is the answer.

(Refer Slide Time: 22:36)

surfaces $z = cxy(x)$ square + y square) and this family of surfaces, we have to find that surface which is orthogonal to this family and passes through the hyperbola x square - y square $=$ a square, $z = 0$. So here again f(x, y, z) we can write f(x, y, z) = $z/(x * y)(x)$ square + y square) = c. So let us find fx derivative with respect to x.

When we differentiate with respect to x we get – z upon (x square $*$ y square) (x square + y square) whole square and then we have x cube y. So we are differentiating with respect to x. So 3x square y and then x y cube so we get y cube okay and then we have fy similarly so $-z/(x)$ square * y square)(x square + y square) whole square okay and then we have derivative with respect to y so we have x cube derivative this side so x cube and then xy cube so 3xy square.

And fz similarly fz can be written as $1/xy * (x)$ square + y square). So let us write the characteristic equations are dx/fx so we have $-z/(x)$ square * y square)(x square + y square) whole square (3x square y + y cube). Dy/ – $z/(x)$ square * y square)(x square + y square) whole square and then we have x cube + 3xy square. And then we have dz/fz which is $1/xy * (x)$ square $+$ y square).

So what we will do is I can write it as or x square $*$ y square (x square + y square) whole square it will go up x square * y square (x square + y square) whole square ℓ - z times (3x square y + y cube). Let us write like this dx and then we have x square $*$ y square (x square + y square) whole square/ – z^* (x cube + 3xy square). And here what we have this is dy and here we have xy $*(x)$ square + y square) $*$ dz/1 okay.

So what we do first we divide by we first x square \ast y square (x) square $+y$ square) whole square let us divide that okay. So we get dx – z and here also I can take y common so - yz and then we have (3x square + y square) okay and here x square $*$ y square (x square + y square) whole square we divide so we get – $dy/ - xz * (x)$ square + 3y square) and we are dividing by x square * y square (x square + y square) whole square so we get $\frac{dz}{xy}$ (x square + y square) okay. Now what we do?

We multiply by xyz in the numerator so if we do that we have xdx divided by we are multiplying by - xyz so xdx/(3x square + y square) and then we have dy/x square + ydy/(x square + 3 y square) and here we get xyz, - xyz so - z $dz/(x \text{ square} + y \text{ square})$ okay. Now what we do is when I add x this one and this one I get 4 times okay so this gives you okay we let goes to the next page.

(Refer Slide Time: 28:17)

So we get this x $dx/(3x)$ square + y square) = y $dy/(x)$ square + 3 y square) = -z $dz/(x)$ square + y square). Now from here what do you notice x $dx + ydy/(4x)$ square + 4y square) so 4 $*$ (x square $+$ y square) = - zdz/(x square $+$ y square). So these 2 cancel out and we get xdx $+$ ydy = - 4z dz. This gives you an integration x square/ $2 + y$ square/ $2 = -2z$ square + some constant.

But you multiply by 2 and you get x square + y square + 4z square = some constant let us say c1 okay. This is 1 solution another solution, let us find so we subtract now x dx - ydy let us consider this and you see that 3x square - x square is 2x square, y square - 3y square is - 2y square so we get 2 times (x square - y square) and what we do here $-zdz/(x)$ square + y square) you can put from here (x square + y square) is $- c1 - 4z$ square.

So let us put that c1 - 4z square here. Now we can integrate easily. So this is $1/2$ times now xdx ydy/(x square - y square) is $1/2$ ln (x square - y square) and here what do we get c1 - 4z square if you put $=$ t, and then c1 - 4z square we put $=$ t and then - 8z dz $=$ dt. So we get z - zdz as dt/8 and so we get dt/1 so this is $1/8$ ln (c1 - 4z square) + some constant okay. So we can multiply by 8 and that will give you $2 * \ln(x)$ square – y square) = $\ln(c1 - 4z)$ square) + $\ln(c2)$.

And this gives you x so we get (x square - y square) whole square $c2 * (c1 - 4z)$ square). Now (c1) $-4z$ square) is (x square + y square) so c2 times (x square + y square) okay. So this is another 1 solution. Now let us find the required surface x square - y square = a square, $z = 0$. So (x square - y square) we are given that given that (x square – y square) = a square, and $z = 0$ okay $z = 0$. In the plane xy we are given a hyperbola.

So here what we get? c2 will be $= (x \text{ square} + y \text{ square})$, x square this c2 I can write as phi c1, let c2 be phi c1 okay. So we get (x square – y square) a4 (x square - y square) a4 = phi c1 $*(x)$ square + y square). Now this is what okay. So (x square + y square) and c1 is what x square + y square + 4z square that is c1 okay. So what we get? phi c1 = $a4/(x)$ square + y square) okay. We have $c2 =$ this okay.

We can write $c1 = x$ square + y square + 4z square, $c2 =$ what is the relation between $c2$ and $c1$? Let us find that. So $c2 = a4/c1$, - c1 okay you can see. $c2 = a4/(x)$ square + y square) and x square $+$ y square is c1 - 4z square. So c1 $*$ c2 = a4 okay. And let us now put the value of c1 and c2. So we get it the following okay. c1 $*$ c2 = (x square + y square + 4z square) $*$ c1 $*$ c2 is what? (x square - y square) whole square/(x square + y square) = $a4$.

(Refer Slide Time: 34:15)

Hence the required surface is given by

$$
x^{2} + y^{2} + 4z^{2} = \frac{a^{4}(x^{2} + y^{2})}{(x^{2} - y^{2})^{2}}.
$$

So that is the surface okay x4 x so we have this as the required surface. With this I would like to end my lecture. Thank you very much for your attention.