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Lecture - 27
Self Adjoint Form

Hello friends, welcome to this lecture. In this lecture we will continue our study of boundary

value  problems.  In  this  lecture  and in  coming lecture  we will  discuss  a  special  kind  of

boundary  value  problem known as  the  Sturm -  Liouville  boundary  value  problems.  But

before that, let us consider some preliminary for Sturm - Liouville boundary value problem.

So first let us start discussing the concept known as Adjoint Equation. 
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So Exact Equation is basically what, we have already seen the exactness conditions for first

order  differential  equation.  And in this  case,  when you talk  about  first  order  differential

equation y dash =f(x, y) or you can say that, when this kind of equation is written as d/dx of

some g(x, y), then we say that this equation which is now written in this form is known to be

exact. Now let us extend this concept for second order and higher order linear differential

equation. 
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So  the  concept  of  exactness  which  is  hugely  discussed  only  for  first  order  differential

equation can be generalized for higher order differential equations as well. So first of all we

need to understand what exactness means. So the nth order differential equation given as like

F (x, y, y...) = 0 is said to be exact if the function F(x, y, y dash ,..., yn ) is an exact derivative

of some differential function of n-1th order means just one less order, say G(x,y,.....,yn-1). Or

we can say that here F(x, y, ....yn) is written as d/dx of G(x, y, ..., yn-1). 

And so in this case when this equation, this left hand side is now written as exact derivative

of some differential function of one less order, we say that our differential  equation is an

exact differential equation. And in our lectures we will discuss only on second order. We can

say that this is a general definition which is applicable for any order >= 1, but in particular we

will discuss only for second order in this lecture. 
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So if we reformulate our definition for second order, we say that second order homogenous

linear differential equation L (u) = p0(x)*u double dash(x)+p1(x)*u dash(x)+p2(x)*u(x) = 0

which is written as the operator form as L (u) = 0. So in operator form it is written as L (u) =

0 is said to be exact differential equation of second order if and only if, for some A(x) and

B(x) which is a differentiable function we can write this differential equation p0(x)*u double

dash+p1(x)*u dash+p2(x)*u as d/dx of A(x)*u dash+B(x)*u.

So if we can write this term (x)*u double dash+p1(x)*u dash+ p2(x)*u as exact derivative of

some differentiable form of one less order that is first order, 2-1 it is first order. And then we

say that this equation L (u) = 0 is an exact differential equation. So we can say that this L (u)

= 0 is exact if and only if we have this relation. 

How we get this relation, if you look at this, if you simplify this, this is what you can write it

here  as  A dash  *u  dash+A*u  double  dash+B dash  *u+B*u  dash.  So  if  you  collect  the

coefficient, it is A*u double dash+u dash*(A dash +B)+B dash *u. So it means that, if you

compare the coefficient here, coefficient will be what, coefficient of u double dash is A here

and here it is p0(x). So we can write p0(x) = A(x). If you look at the coefficient of p1(x),

p1(x) = A dash +B and p2(x) = B dash. 
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So, here by comparing we can get the value of A and B which we have written here, A(x) =

p0 and p1 = A dash +B or we can simplify this to like B(x) = p1- p0 dash and p2 = B dash .

So using the value of B(x) and B dash we can say that the previous equation L (u) = 0 is exact

provided we have this p2 = B dash or B is p1- p0 dash . Now p1 is what, p1 is A, so we can

say that equation is exact if this condition holds true.

So it means that this condition can be written as, if we simplify this, it is what p0 double dash

– p1 dash+p2 = 0. So it means that this L (u) is now written as p0*u double dash+p1*u

dash+p2*u = 0 is exact if the coefficients for this differential equation satisfy this condition.

And we call this condition as exactness condition. So the differential equation (1) is exact if

and only if  its  coefficient  functions satisfy the following condition:  p0 double dash – p1

dash+p2 = 0.

And not only this we can also write the equation p0(x)*u double dash+p1(x)*u dash+p2(x)*u

= d/dx of, now A is p0 here, so A*u dash+ (p1- p0)*u, so this is the value of B which we have

calculated here. So it means that I can write this as d/dx of p0*u dash+(p1- p0 dash)*u. So it

means that literally we are able to find out the exactness condition which is given by this but

we can also write this differentiable form as derivative of this equation. 

So it means that if this equation is not given in the exact form it means that the coefficient

functions does not satisfy this relation. Then we can find out any other function which makes

this equation as an exact equation. Such a function is known as integrating factor. This is the

same concept which we have discussed in first order differential equation. 
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So here we write an integrating factor for the differential equation L (u) = 0 is a function v(x)

such that v*L[u] = 0 is an exact differential equation. So how we can find out this function

v(x), so if you look at by multiplying by v, this much by exact differential equation. It means

that v(x), though this part must be some exact derivative of some differentiable form of one

order less i.e., d/dx of A(x)*u dash+B(x)*u and solving this we can find out the function v(x)

such that this L(u) is an exact differential equation.

And what is the use of this, we can use this, because now your L (u) = 0 is now reduced to

this  equation  A(x)*u dash +B(x)*u = c.  So solution  of  this  L(u)  = 0 is  now reduced to

solution of differential equation of one order less which is known as A(x)*u dash +B(x)*u =

constant; C is some constant which we can determine later on. 

And in particular if you look at the inhomogeneous differential equation L (u) = r(x), the

solution of this inhomogeneous equation is given by the solution of A(x)*u dash +B(x)*u =

integral  of  v(x)*r(x)*dx+  some  constant.  So  this  integral  has  a  limit  depending  on  the

condition given along with this inhomogeneous differential equation. 
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So how to find out the integrating factor which we will discuss little bit later but before that

let us consider one example. So consider the following differential equation x square 2*y

double dash+x*y dash – y = 3 x square 2. Basically it is a inhomogeneous Cauchy-Euler kind

of equation, here without loss of --- let us assume that x is not 0, either x is positive or x is

less than 0. Now we can easily check that it  is an exact differential  equation because the

exactness condition is what, the exactness condition is p0 double dash – p1 dash+p2

Let us calculate this quantity, now p0 is the coefficient of x”, find out the double --- coming

out to be (x square 2) double dash - p1 dash is p1 is the coefficient of y dash, we write it like

that (x) dash +p2 is the coefficient of y that is -1 here. If you simplify this is what, this is

simply 2-1-1, it is coming out to be 0. It means that this differential equation L (u) = 0 satisfy

the exactness condition. So we say that it is an exact differential equation.

So it means that now we can write it x square 2*y double dash – x*y dash – y as a derivative

of this following quantity that is p0*y dash +(p1- p0 dash)*y so we can write x square 2*y

double dash – x*y dash – y as (x square 2 *y dash +(x – 2*x) *y) dash , now x – 2*x is

nothing but –x. So we can say that this inhomogeneous differential equation x square 2*y

double dash – x*y dash – y = 3*x square 2 is now written as x square 2*y dash – x*y = x

cube 3 - c.

 Here we are using this thing because this is written as 3*x square 2, now integrating both

sides we will get that x square 2*y dash – x*y = x cube 3+c. Now we can say that this is a

first order Cauchy-Euler’s equation and we can solve it quite easily. And we can solve it by



seeing that first solve the homogenous problem that is x square 2*y dash – x*y = 0 and find

out  the  general  solution  here.  So  once  we  have  ygs  general  solution  and  the  particular

solution which we can check that it is x square 2.

So in this case we can write the general solution as y(x) = particular solution that is x square

2 plus solution of the homogenous part, that is c1/x+c2*x, so now the general solution is

given by this. 
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So now as we have already discussed that a function v belongs to c2 is an integrating factor

for the differential equation 1 if and only if it is a solution of the second order differential

equation [p0(x)*v] double dash – [p1(x)*v] dash +p2(x)*v = 0. 
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How it comes let us see like this, here we already know that L(u) = 0 is not exact without (())

(12:56) let us assume that L(u) = 0 is not exact, because if it is exact then our integrating

factor is nothing but any function is an integrating factor but let us assume that it is not exact

differential equation. So here it means that p0(x)*u double dash+p1(x)*u dash+p2(x)*u = 0 is

not exact.

So it  means that  now we are finding function v, if  you multiply  this  then it  is  an exact

differential equation. It means that now v*p0*u double dash+v*p1*u dash +v*p2*u = d/dx of

A(x)*u dash+B(x)*u. Now we already know that this is an exact if we have this relation, we

say that coefficient of u double dash that is (v*p0) double dash – coefficient of u dash that is

(v*p1) dash +coefficient of u that is v*p2 = 0. 

So we, by the exactness condition we know that this happens only if we have this relation that

is (v*p0) double dash - (v*p1) dash +v*p2 = 0. In fact, we have just taken the coefficient of u

double dash. This is now p0 dash, I should not write p0 dash, let us use some other notation.

We call it p0~ and this is as p1~ and this as p2~. So we already know that this is an exact

provided that p0~ - p1~+p2~ =0. Now I am just writing the value of p0~, p1~ and p2~ and

we have this relation.
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 So it means that a function v is belonging to c2 category, c2 function is an integrating factor

for the differential equation (1) if and only if it is a solution of the second order differential

equation [p0(x)*v] double dash – [p1(x)*v] dash +p2(x)*v = 0. Now if you simplify this we

can get a relation like this, we can get this as [p0*v dash +p0 dash*v] dash – p1*v dash – p1



dash*v+p2*v. Now further  simplifying  we have p0*v double dash+p0 dash*v dash + p0

dash*v dash +p0 double dash*v dash – p1*v dash - p1 dash*v+p2*v = 0.

When we collect this then we have this relation p0*v double dash that is here+(2*p0 dash-

p1)*v dash , so we collect the coefficient of v dash . Coefficient of v dash is here, here, here

and here. That is (2*p0 dash- p1)*v dash +the remaining part that is we have here, here and

here. So we can write it here. So by collecting this we can get this term (p0 double dash- p1

dash+p2)*v = 0. So we say that  the operator M in (5) is  called the adjoint  of the linear

operator L. The differential equation (5) expanded to the differential equation. 

So we simply expand this differential equation given in, this M[v] = 0. If we expand we have

this, p0*v double dash+(2*p0 dash- p1)*v dash +(p0 double dash –p1 dash +p2)*v = 0 and

we call this differential equation as the adjoint of the differential equation L(u) = 0, where

L(u) is defined as p0(x)*u double dash +p1(x)*u dash(x)+p2(x)*u(x) = 0. So adjoint of L is

given as M. And we can easily check that if you find out the adjoint of M then we can have

some other equation.

(Refer Slide Time: 17:46)

 So now here is where the important identity known as the Lagrange Identity which we can

calculate from equation number (1) and (5) which is known as Lagrange Identity. So here

from (1) and (5) we can say that v*L[u] – u*M[v], if you want to calculate this quantity, then

we will get is what is known as Lagrange Identity. So let us first calculate this quantity, so

v*L[u] – u*M[v].



So when you write v, L[u] is basically what, previous slide it is already given L[u] now you

just  multiply  v  here  –  u*M[v],  multiply  u  here  and  just  simplify  and  you  will  get  the

following  inequality  that  is  (v*p0)*u  double  dash  –  u*(p0*v)  double  dash  +(v*p1)*u

dash+u*(p1*v) dash . 
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So let us do it in here. So here your M[u] is given as (v*p0) double dash – (v*p1) dash +

(v*p2). So that is your M[v]. If you calculate L[u], L[u] is basically p0 double dash*u +p1

dash*u dash +p2*u = 0. So here this is not dash it is simply p0. So now let us calculate, now

we want to calculate this quantity v*L[u] – u*M[v], so v*L[u] – u*M[v] that we want to

calculate.  So  v*L[u]  is  what  v*p0  double  dash*u+p1*u  dash*v+p2*u*v  –  u*M[v].  So

u*M[v] is u*(v*p0) double dash – u *(v*p1) dash – u*v*p2.

So this will cancel out here and what is left here is v*p0 double dash*u – let us write it here

u*(p0*v) dash +p1*u dash*v – u*(v*p1) dash. So now we want to simplify this, that is what

it is written here u*(p0*v) dash +p1*u dash*v – u*(v*p1) dash, that is what it is written here.

Now let  us simplify this,  I  think there is,  it  is  double dash here.  So when you simplify,

u*M[v] I think there is a plus sign here, u*(v*p1) dash here it is+sign. 
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So here, now let us look at this term here (v*p0)*u double dash – u*(p0*v) double dash, so

here we use this inequality w*u double dash – u*w”, this can be written as (w*u dash- u*w

dash ) dash . How we can write this, if you simplify this it is what w*u double dash+ w dash

*u dash- u*w” – u dash*w dash. So now this will cancel out and we have w*u double dash –

u*w”, that is what is written here. Using this, here this is simply (u*w) dash = u*w dash

+w*u dash, this is simply product rule for functions.

So using this w is your v*p0, so using this I can write this term as, we can simply write this

as [v*p0*u dash – u*(v*p0) dash] dash +this we write (v*p1*u) dash. So using this and if we

simplify this we can write it this as v*L[u] – u*M[v] as d/dx of p0*(u dash*v – u*v dash) –

(p0 dash – p1)*u*v]. So when you simplify you will get this. So it means that this is written

as  what,  you simply  write  d/dx  of  and here  you simplify  v*p0*u dash – u*(v*p0) dash

+v*p1*u dash. 

So using this you can write it that p0 dash-p1 is u*v. So here you have to simplify this. When

you simplify this you will get this v*L[u] – u*M[v] = d/dx of p0*(u dash*v – u*v dash) – (p0

dash – p1)*u*v and this identity is known as Lagrange Identity. So when you simplify this

you will get this. Now let us consider this Lagrange Identity as very useful and we will see

how this is useful in further lecture.

So now we define one  more important  type of  equation  known as  self  adjoint  equation.

Homogenous differential equations that coincide with their adjoints are said to be self adjoint

equations. It means that, we have already discussed that corresponding to L (u) = 0 we have



adjoint equation M(v)=0 and if your operator L is ideally equal to M then we say that our

equations  are  given  in  self  adjoint  equation  form.  So  it  means  that,  let  us  find  out  the

conditions under which equations are known as self adjoint equations. 
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So necessary and sufficient conditions for equation (1) to be self-adjoint is that 2*p0 dash- p1

= p1.
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How we can identify this, so if you look at here we have this L (u) = 0. So this is what p0*u

double dash+p1*u dash+p2*u = 0. And we have obtained our M (v)=0 provided that here we

have (v*p0) double dash+(v*p1) dash +(v*p2) = 0. There is a small mistake here, the mistake

is that this is – in place of +, so it is – here. So if you simplify, we can write this as, I think

this is the following format, this we have already calculated that p0*v double dash, so we can



write it here p0*v double dash+(2*p0 dash-p1)*v dash +(p0 double dash – p1 dash+p2)*v =

0.

 So we say that L (u) = M (v) provided that the corresponding coefficients are same. So look

at the corresponding coefficients. Here the corresponding coefficient of u double dash is p0,

here it is p0, so no problem. If you look at the coefficient of u dash it is p1 here but here it is

2*p0 dash – p1. So it means that 2*p0 dash- p1 has to be equal to p1. So this is one set of

condition which you need to. Look at the coefficient of u, p2 and here it is p0 double dash –

p1 dash +p2 here.

Now if you simplify this, this you can get it 2*p0 dash = 2*p1. So we can write it here, this as

p0 dash = p1. So if you use this then p0 double dash = p1 dash. So we can say that this

condition is also truly satisfied by the next equation that if you take p0 dash = p1 then this

condition is automatically satisfied. So we say that L (u) is same as M (u) provided that we

have p0 dash = p1. That is what is written here that the necessary and sufficient conditions for

equation (1) to be self-adjoint is that condition that 2*p0 dash- p1 = p1 or we can write it p0

dash-p1.

So it means that the coefficient of u double dash = coefficient of u dash. That is what the

condition is given here. And this proves the first statement of the following theorem. The

following theorem says that the second order linear differential equation (1) is self adjoint if

and only if it has the following form. So here if you look at, our equation is reduced to what

p0*u double dash+p1*u dash+p2*u = 0. So now in place of p1 I can write it as p0 dash. So

we can write p0*u double dash+p0 dash*u dash+p2*u = 0. 

Now if you look at these two term, then I can write this as d/dx (p0*u dash) +p2*u = 0. So it

means  that  now I  can  write  our  differential  equation  in  the  following  form that  d/dx  of

p0(x)*du/dx+p2(x)*u = 0. So if a particular differential equation is written in this particular

form then it automatically satisfies the necessary and sufficient conditions for self adjoint. So

it means that this kind of differential equation is known as self-adjoint differential equation.

If it is not given in self-adjoint equation, then we can always find out the integral factor by

which  we  can  make  differential  equation  into  a  self-adjoint  form.  We  claim  that  the



differential  equation  can  be  made  self-adjoint  by  multiplying  thoroughly  by  this  integral

factor h(x) = [exp integral (p1/p0)*dx]/p0. This is our claim; let us prove this claim here. 
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So to prove  the  second statement,  we assume that  our  equation  p0*u double  dash+p1*u

dash+p2*u = 0 is not given in self-adjoint form. So it means that your p0 dash is not equal to

p1. So what we try to do, here we multiply by some function by which we say that it is your

integrating factor. So before that multiplying let us assume that p0 is never 0 so that we can

divide it by p0. So when you divide by p0, we write it as u double dash+(p1/p0)*u dash+

(p2/p0)*u=0.

Now multiply by h, so when you multiply by h, you have h*u double dash+(p*h)*u dash+

(q*h)*u. Here p*h is, p is p1/p0, so let us call this as p here and call this as q. So it means that

we are writing u double dash+p*u dash+q*u = 0. Then multiply by h. So we have h*u double

dash+(p*h)*u dash+(q*h) u = 0 where p is p1/p0 and q is p2 here. Now our claim is that here

this is an exact differential equation, so it means that this is given in self adjoint form. 

So it means that if it is self-adjoint form then (()) (30:39) of this u double dash must be equal

to the coefficient of u dash. So it means that h dash must be equal to p*h. This equation is in

self-adjoint  form if  we have h dash= p*h and this  is  first  order  homogenous differential

equation, so we can easily solve this equation to find out the value of h. If you solve, then

equation of h is given in exp (p*dx) where p is this p1/p0. So it means that the equation (8)

can be made self-adjoint, so it means that if you multiply here h by p0 then this equation is in

the form of self-adjoint form because this h we are multiplying in this kind of equation. 



If we have p0, first we have to divide by p0 and then multiply by h. So it means that the

function  h  which  we need  to  multiply  to  make  this  equation  as  self-adjoint  form is  the

following  function  h(x)  =[exp(p1/p0)*dx]/p0.  So  if  you  multiply  this  equation,  then  our

equation is reduced in a self-adjoint form. Let me, look at here, so h is coming out to what? H

is coming out to be the exponential of p1/p0*dx.

 So h we are multiplying here in this equation. So it means that if you multiply h/p0 into this

equation that is p0*u double dash +p1*u dash+p2*u then this is what, this is h*u double

dash+h*p1/p0*u dash+h*p2/p0*u = 0. So if h is this, then this can be written as d/dx of

(exp(p1/p0)*u dash)+h*(p2/p0)*u] = 0. So if you looking at making this as self adjoint the

only rule is of the coefficient of u dash and coefficient of u double dash. So you need not to

worry about coefficient of u at all. 

So now we say that self adjoint equation is very common and it is written in this particular

form d/dx of p0(x)*du/dx]+p2(x)*u = 0 and if it is not given in self adjoint form then we can

always multiply by function which we have denoted as the equation number 9. We can make

linear differential equation into a self-adjoint form. So it means that now onward without (())

(33:48) we can always consider that a given second order linear differential equation is given

in self-adjoint form.
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And here  note  one  thing  that  in  this  case  self-adjoint  differential  equation  the  Lagrange

Identity is now simplified and it is now given as v*L[u] – u*L[v] = d/dx of p0(x)*(u dash*v-



u*v dash)]. In fact it is d/dx of p0(x)*w(u,v). So that is what, why because in self-adjoint

form p0 dash=p1 and if you look at, go to Lagrange Identity. Lagrange Identity the coefficient

of u*v is (p0 dash-p1). So in self adjoint form p0 dash= p1.

 So this will cancel out in the case of self-adjoint equation forms. So what remains is d/dx of

p0*(u dash*v – u*v dash).  That is what it  is  written here d/dx of p0(x)*w(u,v).  So here

Lagrange Identity simplifies to v*L[u] –u* L[v] = d/dx of p0(x)*(u dash*v – u*v dash) and

which I can write it as –d/dx of p0(x)*w(u,v). So now let us consider one example.
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 So consider this Chebyshev differential equation. So here we want to reduce the following

differential  equation  to  self  adjoint  form. Right  now it  is  not  given in  self-adjoint  form,

because if you differentiate this (1 - x square 2) it is given as -2*x which is not the coefficient

of u dash. Coefficient of u dash is only x. So right now this differential equation is not given

in self-adjoint form. 

So let  us  make  it  into  self  adjoint  form.  So here  we just  compare  from the  differential

equation and we say that p0 = 1- x square 2, p1(x) = -x and p2(x) = lambda. So we already

know that the factor by which we can make this equation as self adjoint equation. We can

calculate h(x) as [exp (p1/p0)*dx]/p0. So p1 is –x and p0 is 1- x square 2. 
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So we can calculate this h(x) as 1 upon (1-x square 2) this is p0*e to the power ½*(-2*x/(1-x

square  2)).  This  we  can  simplify,  this  is  what,  this  I  can  write  as  1  upon  (1-x  square

2)*[e1/2*(ln*(1-x square 2))]. So you can write this as 1 upon 1-x square 2(square root (1-x

square 2)). We can simplify and we can have h(x) as 1 upon (1-x square 2) power ½. So it

means that by multiplying this function h(x) we can make our differential equation as self-

adjoint differential equation. 

So multiply throughout by 1 upon 1-x square 2, we have this following differential equation

((1-x square 2) to the power 1/2)*u double dash – (x/(1-x square 2) to the power 1/2)*u dash

+(lambda/(1-x  square  2)  to  the  power  1/2)*u  =  0.  You  can  easily  check  that  here  the

derivative of this is given by this. So this is given in self-adjoint form. 
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Now  let  us  look  at  one  more  example,  so  that  if  u  and  v  are  solution  of  self-adjoint

differential equation then this quantity (p*u dash) dash +q(x)*u = 0, this is the self-adjoint

equation given. Then p(x)*[u *v dash - v*u dash] is a constant. So this is the self adjoint

equation given in this way and we say that u and v are solutions of this then the following

quantity is a constant quantity.

This is straight forward example because the given equation is self-adjoint form then we have

v*L[u] – u*L[v] = d/dx of p(x)*(v*u dash- u*v dash ). So we already know that u, v are

solution of this, so L[u] = 0 and L[v] = 0. So this part is going to be 0, so it means that

p(x)*[u*v dash -v*u dash] is going to be 0. This says that the given p(x)*[v*u dash- u*v dash

] is a constant value. So this example is straight forward example based on Lagrange Identity.

By  using  Lagrange  Identity  for  self  adjoint  form  we  can  easily  say  that  this  quantity

d/dx*[p(x)*(v*u dash- u*v dash )] = 0 and by integrating we can say that p(x)*[v*u dash-

u*v dash ] is equal to a constant value. So here we end our discussion and in the next session

we will start with Sturm - Liouville boundary value problem. That is all for this lecture, thank

you very much for listening. Thank you. 


