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Hello friends welcome to this lecture. In this lecture we will continue our study of finding

series  solution,  solutions  for  linear  differential  equation  in  the  neighbourhood  of  regular

singular point so if you would recall in previous lecture we have discussed the method of

Frobenius to find out series solutions for linear differential equation and we have considered

basically 3 case depending on the roots of indicial equation.

So in case when roots of indicial equation are not equal and not differ by integer we know

how to find out the solution and that we have discussed in previous class. Now in this class

we discuss the case when the roots of indicial equation say E are equal and we have seen in

previous class that when roots of indicial equation here it is denoted as R1 and R2.
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And when r1 = r2 and we have only one solution of the form that is y1t = t to the power r1

summation from 0 to infinity an t to the power n, so one solution is given like this and the

second linearly independent solution is given by this y2t = y1 lnt + n = 0 to infinity an dash

r1 t to the power n + r here. So here this is basically r1 here, so here the current form is

already discussed in previous class. Here we take some example based on this. So here let us

take one example.



(Refer Slide Time: 02:21)

So find 2 solutions of Bessel’s equation of order 0. So here Bessel’s equation is given by t

square d2y/dt square + t dy/dt + t square y = 0, t > 0, and if you look at the coefficient of

d2y/dt square that is t square so t = 0 is a singular point and now we want to check whether it

is a regular singular point or irregular singular point. Now we want to show that it is a regular

singular point for that look at the tPt.

So tPt is 1 and t square Q t is 1. So both are basically constant function, so we can say that

both are analytic function near t = 0, so it means that our theory can be applied here to find

out solution so here let us assume yt = summation n = 0 to infinity an t to the power n + r is a

proposed solution and we need to find out the values of r and the corresponding coefficients

an’s so that this will serve as a solution of equation number 3.

So for that you just calculate y dash t, so y dash t is from n = 0 to infinity n + r an t to the

power n + r-1 and calculate y double dash t so it is n = 0 to infinity n + r * n + r -1 an t to the

power n + r -2, so once we have yt, y dash t, y double dash t put it back to equation number 3.
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And you will see that here it is n = 0 to infinity n + r * n + r-1 an t to the power n + r because

we have already term like t square so t to the power n + r-2 and 2 t square will make it t to the

power n + r + here it is t/dt. So here it is summation n = 0 to infinity n + r an t to the power n

+ r + n = 0 to infinity n t to the power n+ r + 2.

So here it is t square y, y is already given to you. So you can write an = 0 to infinity, an t to

the power n + r. So here we have the L y = n = 0 infinity n + r, n + r-1 an t to the power n + r

+ n = 0 to infinity n + r an t to the power n + r + n = 0 to infinity an t to the power n + r + 2.

Once we have this equation then we do the equating the sums of like power of t = 0 here. So

here if you look at when you put n = 0 your powers will start from 2.

And if you look at the first 2 terms if you put n = 0 then your powers start from t to the power

r. So we can collect the coefficient of t to the power r and t to the power r + 1 and t to the

power r +2 then all the terms of this equation will come into picture. So first let us look at the

coefficient of t to the power r = 0. So t to the power r = 0 means here look at the first term,

here you put n = 0 so it is r * r -1 + here you will also get r.

So it is r * r -1 + r that is r square a0. So this we write F of r a0 = 0, so this is corresponding

to t to the power r and here we are getting this r * r -1 a0 + from second term were are getting

r a0 and = 0 because here if you look at the third term if you put n = 0 then the power raised t

to the power r + 2 so there is no contribution from the third term. Okay.



So here we have t to the power r and we have this r square a0 and that is f of r a0 = 0 and then

you look at the coefficient of t to the power r + 1 again there is only contribution from first 2

term only that is a1 corresponding to n =1 so it is r +1 r a1 + r +1 a1 = 0. So if you calculate

this then here we have 1+ r whole square * a1 which I am writing as f 1+r a1 = 0 and then

when you put general term t to the power n + r = 0 then what you will get here is from this

term.

So write general term so it is n + r  n + r -1 an + n + r an and if you look at the last term then

last term is having power t to the power n + r +2. So if we replace n/n-2 then that power will

be t to the power n + r. So here we write an – 2 and that is the coefficient of t to the power n +

r. So if you simplify this, this and this will give you n + r whole square an so here you will

get as n + r whole square an = - of an – 2 here, that we are writing here.

So here we will get 3 equations first is r square a0 = 0 and then next is f of 1 + r * a1 = 0 and

last one is f of n + r an = -an -2 and here n is >= 2.
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So now, so equation 1 is indicial equation and that is r square a0 = 0 and we already know

that a not is never 0 so your indicial equation f of r = r square = 0 so if you look at the roots

of this indicial equation are 0. So r1 = r2 = 0. So here we have equal root of indicial equation.

Now if you look at the second equation that is r + 1 whole square a1 = 0 so if you take r = 0

then this term is nonzero.



So a1 has to be 0. So from second equation we say that a1 has to be 0 and if you look at the

third term that is f of n + r, okay, so last one is what f of n + r an = -an-2, so here we can write

an as – an -2 upon n + r whole square and that is n >= 2. So for, we have equation like this an

= -an -2/n+r whole square and n >= 2. Now we already know that a1 is 0 that we have just

calculated, a1 = 0.

So using this formula we can say that all the odd terms are going to be 0 because if you write

a3 then a3 is given in terms of a1 – a1 upon 1 + r whole square, so here we say that since a1

is 0 so a3 is going to be 0 now a3 is 0 then using this recurrence relation we can say that all

the odd terms are going to be 0. So that fix matter that all the odd coefficients are 0. Now

look at the a2r.

A2r is given as using this formula 4, a2r = -a0 upon 2 + r whole square here we write -1 upon

2 + r whole square * a0. If you look at a4r, a4r = -a2 upon 4 + r whole square. Now a2 we

have already calculated so it is 1 upon 2 + r square and 4 + r square a0 and so on. So in this

way we can calculate our even order coefficients.
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And we can write this formula as a2nr = -1 to the power n 2 + r whole square 4 + r whole

square and so on 2n + r whole square * a0 and to determine y1t, we simply put r = 0 because

here we have 2 roots r1 = 0 = r2, so to find out one solution we can put r = 0 and we can find

out a20 = -1 to the power n and when put r = 0 all these term will be sample vanishing so it is

2 square 4 square and so on. 



So a2n 0 is going to be 2 square 4 square up to 2n whole square so or we can write it a2 as -1

to the power n 2 square a0 and a 4 0 as 1 upon 2 square 4 square a0 and so on. So in this way

you can calculate here a2n 0 = here – 1 to the power n and if you look at it is 2 square 4

square and so on n square and if you simplify and a0 and it is – 1 to the power n and here if

we look at it is what 2, 4, 6 and so on 2n.

Here it is 2n whole square and whole square and this we can write as -1 to the power n, 2n *

factorial n whole square. Here that we can simplify here, if we take 2 out then it is 1 2 3 and

up to n. So here we can write -1 to the power n and 2 to the power 2 n will come out and

factorial n whole squares. So that an * a0 we are writing here.
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So here we got a2 n0 as -1 to the power n a0/2 to the power 2n factorial n whole square. So

now we already know that all odd terms are 0 so we can write y1t as 1- you simply write it

y1t = summation an t to the power n + r and is from 0 to infinity. So here this we can write as

let me write it here. So here we can write a0 t to the power r + a1 t to the power r + 1 + a2 t to

the power r + 2 and so on.

Now we already know that these terms are gone, odd terms are gone and r = 0 here so we can

write a0 let us say that if we take a0 as 1 then we can write out solution as y1t = 1–t square

upon 2 whole square. Here we are using the value of A2 that is value of A2 we have already

calculated. Value of a2 is –1 upon 2 square.



So here we are using 1-t square upon 2 square + a4 a4 as 1 upon 2 to the power 4 factorial 2

whole square and so on, so in this way we can calculate y1t. So y1t is one solution of 3, that

we have already calculated and this solution is referred as Bessel’s function of the first kind

of order 0 and we denote as J not t. So now to obtain a second solution we have already seen

that our second solution y2t can be written as y1t * ln modulus t + n = 0 to infinity a dash 2 n

0 t to the power 2n.

Here I am writing a 2n dash 0 because we already know that a2n +1 r is 0, irrespective of

whatever value in the n. So here what is left out is only the even terms. So here we need to

calculate the derivative of aa2n r.
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So to calculate a derivate of a2n 0 so here we use this thing. We already calculated a2nr like

this, so here let us assume without loss of generality that a not = 1 right. Then a2nr is given

by this and if you want to calculate a-2n at 0 for that we simply look at that a dash 2n0/a2n0

that can be written as d/dr ln of a2n r modulus of a2nr log and that you calculate at r = 0 and

using the, let me do it here.
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So here a2nr is given as -1 to the power n, it is I think it is written here. It is 2+r whole

square. Let me write it here, 2 + r whole square, 4 + r whole square and so on, 2n + r whole

square. So here let us take the modulus of a2n r that will get rid of this minus sign so it is 1

upon 2 + r whole square, 4 + r whole square and so on 2n + r whole square and then take the

ln, so here if you take the ln here then it is what, ln of -1 that is gone.

So –ln of the summation will come, sorry the summation is outside this, so here you will get

summation here we can write 2 + r 2n+r whole square and is from, if you write k, so let me

write k here, 2k + r k is from 1 to n. so we can write ln of modulus of a 2nr = -of k = 02n ln

of 2k+r whole square, is it okay. Then we can take the differentiation. So if we take ln of

modulus of a 2n r.

Now take the derivative. So derivate will be 1 upon a2n r and a dash 2n and here it is r. Now

we take r = 0 here = here it is what – and then we can summation k = 02n and 2 you can take

it out, 2 and this is 1 upon 2 k + r and k is from 0 to infinity and that you calculate at r = 0. So

when you simplify, it is k = 1 not 0, so it is from k = 1. So here when you put it is what minus

and here when you put k = 1 then it is what, 1 upon 2 is already out -2 and here it is what, 2 +

1 upon 4 +1, so you will get.

And when you take 2 out then it is what it is given as -1+1/2 +1/3 and last is 1/n, so here we

can get this as a dash 2n 0/a2n 0 like this, and this we denote as hn so that we are going to

write it like this.so here we have calculated a dash 2n0/a2n0 as -2 1 upon 2 + r +1 upon 4 + r



and so on and when you put r = 0 then all these terms will simple cancel out and you take 2

inside then a dash 2n0 = -21/2+1/4 and so on a2n 0.

Now this I am writing as -1 + 1/2 + 1/3 and so on, a2n0. So here if we set the bracket term as

Hn.
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So we can write Hn as 1 + 1/2 + 1/3 + 1/n then we can write a dash 2 n 0 = -Hn * -1 to the

power n/2 to the power 2n factorial n whole square. This we are writing as the value of a2n0

that is -1 to the power n/2 to the power 2n factorial n whole square. So using the value of

a2n0 we can write a dash 2n0 as this. So y2t = y1t ln0 t + n = 0 to infinity – 1 to the power n

+ 1 Hn t to the power 2n/2 to the power 2n factorial n whole square and that is going to be

your second solution of Bessel’s equation of order 0.

But if you look at this Bessel’s solution, second solution contains the term ln modulus t and

because of this it is having unboundedness near the point t = 0 so generally we ignore this

second solution but for sake of completeness we are putting the second solution like this,

okay. So now look at the last case, the second case where the method of Frobenius may not

give the second solution of the Frobenius form.
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This occurs when the roots of the initial equation differ by a integer so here we have already

seen that when r1-r2 is nonzero, not integer then we already know that we have discussed in

previous lecture and the case when r1 = r2 that is difference is 0 we have already discussed

one example right now and then last case when r1-r2 = some n and is some integer that we

want to discuss it now.

So here we already assume that r1 is > r2, so let us take r1 = r2 + some n0, n0 is some integer,

positive integer and in this also we have only 1 solution of the form that is y1t = t to the

power r1 summation n = 0 to infinity an t to the power n and we are not sure about the second

solution why, because that we are going to discuss but we are not sure about the second

solution. 

We will take this form or not, it may take this form, it may not take this particular form that

depend on the difference of r1-r2.
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So here we will not get the second solution because if you remember the recurrence solution,

recurrence solution is what f of r2 + n * an + r2 = -summation k = 0 to n0 -1, this term is

there, so from recurrence relation we know that if f of r2 + n = 0 when n = n0. So when n =

n0 then the coefficient of a n0 is basically 0. So here this is 0 and here if you look at the

righthand side it is –k from 0 to n0 -1, k + r 2 Pn0 – k+ qn0 –k * ak.

That is, I am writing the recurrence relation for n = N0 and we cannot find the coefficient an0

if the right hand side is nonzero. So if righthand side is nonzero then this equation cannot be

satisfied. So it means that in this case when this righthand side is nonzero we do not have any

solution of the form given by Frobenius. So in this case equation 3 has a second solution of

this form y2t = y1t lnt * sum constant + t to the power r 2 summation n = 0 to infinity bn tn.

So it is up to us how to calculate this bn and this constant. So many times it may happen that

your constant  k maybe 0.  So the second solution may happen that  we do not have term

involving lnt, but that will depend how to find out this kn bn and one method to find out this

is the method of variation of parameters so once we know one solution we can use method of

variation of parameter to find out the other solution.

So it means that when this righthand side is nonzero then we do not have no method to find

out this coefficient a0 and we simply say that second solution will not be the form of forming

a series solution and it will take the form of 8 where it may or may not involve the term y1t

lnt and it is up to us how to calculate this bn.
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But if this is 0 means if the righthand side of this equation is 0 then of course we can say that

equation is satisfied means 0 * an0 = this term which is already = 0 in this case we can

choose any value of the coefficient a0, so in particular we will take the value 0. So here we

take a0 as 0 value. If we take a nonzero value, then we will get a part of y1t it means that

when we take an0 as nonzero then when you calculate all the coefficient.

And when you write the general solution then you will say that y2 will contain a part of y1t.

So to avoid this thing we generally assume that an0 = 0 so here we say that once we have an0

then we can use our recurrence relation to find out further coefficients an0 + 1 and so on. So

in this case when this right hand side is = 0 we can find out all the coefficient and we say that

our solution is given in terms of series solution of the form of given by Frobenius.
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So let us take one example based on this thing that root differ by integer so here let us take

Bessel’s equation of order 1/2 so here it is t square d2y/dt square + tdy/dt + t square -1/4y = 0

here, I am assuming that is positive. So here we can easily see that t = 0 is a regular singular

point as Pt = 1/t and Qt = 1 upon t square * t square -1/4 and not continuous at t = 0. So first

thing is to check whether it is a singular point or not.

So once it is singular point then look at the next thing that is it is regular singular point or not.

For that you look at tPt and t square Qt. So look at tPt, tPt is = 1 and t square Qt is t square –

1/4 and we can say that these 2 are analytic function, so we can say that t = 0 is a regular

singular point. Once it is regular singular point then we can propose our solution is of the

form yt = summation n = 0 to infinity an t to the power n + r.

And we can find out the solution y dash t = n from 0 to infinity, n + r an t to the power n+r -1

and ytt, y double dash t = n = 0 to infinity n+r n+r -1 an t to the power n+r -2, put it back to

equation #10 and we can have Ly as summation n = 0 to infinity, n+r n+r -1 an t to the power

n+r because t square is already there and second term is n = 0 to infinity n + r an t to the

power n + r + 0 to infinity an t to the power n + r +2-1/4 n = 0 to infinity an t to the power

n+r. So last 2 term is corresponding to this term the t square -1/4 * y.
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So when you simplify this we simply say that this term, this term and the last term will give

you the coefficient of t to the power n +r and this term means third term is going to give a

term having power t to the power n + r + 2. So we can write this as from n = 0 to infinity n+r



* n+r -1 + n+r-1/4 an t to the power n+r and from n = 2 to infinity an-2 t to the power n+r. So

again this we can simplify and we can say that it is n+r whole square.
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So we can write that equating the sums of like powers of t = 0, so here first let us take t to the

power r. If you look at the coefficient of t to the power r that we can obtain from by putting n

= 0 when put n = 0 then it is r * r-1 +r-1/4. So it is r square – 1/4 r square -1/4 * a not = 0 and

when you look at t to the power r +1 and then again there is no contribution from this term

and we will look at here by putting n = 1.

When you put n = 1 then 1+r 1+r -1 +1 +r -1/4 a1 = 0, so we have F of 1+r a1 = 0 and F of

1+r is 1+r whole square -1/4 a1 = 0, the last is t to the power n+r and here we have F of n+r

an which is given as n+r whole square -1/4 an and there is a contribution of last term also

here it is +an -2. So here when you take the other side it is –an -2. So here we will get these 3

equations.

First is the indicial equation which will give you the values of r for which we can find out the

solution and that when you look at it is nothing but r = +/- 1/2 so r1 is the bigger value that is

1/2 and r2 = -1/2,  so here we have 2 roots of indicial  equation which are differed by n

positive integer that is 1.
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So let us look at the analysis of this, so here I said that r1 = 1/2, r2 = -1/2 so let us find out the

solution corresponding to r1 = 1/2 and let us set that a not = 1 so that this solution should not

come back. So now look at the second solution and if you put r = 1/2 then what you will get,

here when you put r = 1/2 then you can say that this term is not going to be 0. So even has to

be 0 for this. So here we say that the second equation forces a1 to be 0.

So we can say that  since a1 = 0 then by recurrence relation that is  obtained by the last

equation that is this thing so here we can simply say that an = -an-2 and if you simplify this is

what n + r whole square -1/4 and when r =1/2 when you can simply say that an = -an-2 and it

is what, n+1/2 whole square -1/4 you can further simplify this. Okay, so we can write an as –

an-2/n+r whole square -1/4. So from this we can simply say that since a1 = 0 then all term

will be 0.
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Then even coefficient we need to calculate so let us calculate a2 r, a2r = -a0 upon 2+r whole

square-1/4 and we can simply say that it is -1 upon 2 + r whole square -1/4 and similarly we

can calculate a4r and all that.
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And we can prove by induction that a2nr is given by -1 to the power n, 2+r whole square

-1/4, 4+r whole square -1/4 and so on. So this is the formula of a2nr when r is some values.

We already know that our first solution is corresponding to r1 = 1/2 just put the value of r1 =

1/2 and put set = a not = 1, we can say that this equation is given like this.
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So here we have a2 as -1 upon factorial 3, a4 as 1 upon factorial 5 you can simply calculate

a4 as –a2 upon 4+1/2 whole square-1/4 and we can write it like this. In fact, you will use the

formula of a2-b2 as a-b a+b, so we can say that here it is, in a2 it is –a0 upon 2 * 3 a0 is 1, so

you can write -1 upon factorial 3 and a4 it is what –a2 upon 4+1/2 whole square -1/4 which

we simplify and we can write it 1/factorial 5 and so on.
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So here we can prove by induction that a2n is going to be -1 to the power n/factorial 2n *

2n+1 that you can prove it and once we have a2n we can easily find out the first solution y1t

as t to the power r then it is t to the power 1/2 and upon t t – t cube upon factorial 3 and so on,

So, y1t = t to the power r1 summation a2n r1 t to the power 2n and is from 1 to infinity,

basically it is from 0 to infinity. 



And a0 we are assuming as 1, so that we are writing it here. So we are writing y1t = t to the

power, so r1 is 1/2 her. So here we have already calculated a2n as -1 to the power n/factorial

2n 2n + 1. So we can write down our solution as y1t = t to the power r1 summation n = 0 to

infinity a2n r1 to the power 2n. So here a0 is already we assumed as it is 1 and r1 = 1/2 then

we can put as root t * a0 that is 1 and a1 is 0 so that we are cancelling out.

A2 we have calculated as -1 upon factorial 3 so t square + a4 is 1 upon factorial 5 * t to the

power 4 - so on. So now if you look at this then we can multiply and divide by t so we can

multiply by t here so we can write this as t to the power 1/2/t and in the bracket it is t–t cube/1

factorial 3 + t 5 upon factorial 5 and so on, and we already know that this is an expansion of

sin series and we can write this as t1/2/t 1/root t and this is sin t.

So y1t is given as 1 upon root 2 sin t, so that is our one solution and we can find out the other

solution look at the other solution here, so it means that in this case our solution is given by

1/root t sin of t and if you look at in this case r1-r2 is basically 1, so we need to find out our

second solution. The second solution may not be of this form maybe some other form let us

look at  this  analysis  and that  analysis  we are going to  do in  a  next  lecture.  So here we

conclude and will discuss it in next lecture. Thank you for listening us thank you.


