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Regular Singular Points - III

Hello friends, welcome to this lecture. In this lecture, we will continue our discussion of finding

probability series solution method for linear ordinate differential equation having regular singular

point. So what we have seen in previous lecture that we are considering this equation that y

double dash t + pty dash - qty=0 here and here we are resuming that t=0 is a regular singular

point.

It means that is a singular point. It means that pt and qt is not having a Taylor series expansion,

but tpt and t square qt is having a power series solution.
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Power series expansion like this, tpt is written as summation, n=0 to infinity, pnt to power n and t

square qt is having power series expansion as n=0 to infinity qnt to power n and here we have

seen that in this case, we may try our solution like yt=n=0 to infinity and t to power n+r and

using this series solution, we have just calculated that if you plug in this value, then we have t to

power r-2 * n=0 to infinity and f(r+n)+k=0 to n-1 qn-k+r+kpn-k ak*t to power n.



Here f(r) is defined like this, f(r) is a quad equation in terms of r, which is given as r * r-1 +rp not

+q  not,  where  p  not  and  q  not  is  coefficient  here.  So  using  this  expression,  we  have  this

following term and this is the coefficient of t to power n. So here equating the coefficient of t to

power n to 0, we have this expression that tnf(r+n)=-k=0 to n-1, qk+r+kpn-k*ak, so here using

this formula, we can find out the coefficient of n depending on r and the previous coefficient a

not 2, an-1.

So here we have considered several cases that here there are possibilities that he r1 and r2 are

roots f(r), states that r1>/= r2, so here one possibility is that when r1=r2 that we cannot use this

formula to find out the second solution and another possibility where we are not able to find out

the second solution is that case when r1-r2 is some kind of integer. In that case also we are not

able to utilize this formula because this f(r+n) is going to be 0 when we are considering the lower

value that is r2 here.

So the case when we can use this formula to obtain 2 Frobenius series solution method is the

case when r1 and r2 are not equal and r1-r2 is also not equal to any kind of integer and in this

case, we can find out 2 Frobenius series solution method and let us find out the example where

we can have this possible case.
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So here we are considering this case. So we are considering following Bessel’s equation of order

p, so here we need to find out 2 solutions of Bessel’s equation of order p where Bessel equation

is defined at t square d2y/dt square+t/dt+t square-p square y=0 where t>0. So first thing we have

to look at that t=0 is a singular point. So if you look at the coefficient of highest order derivative

present here, that is d2y/dt square, if you look at the coefficient is t square.

Coefficient of t square means that at t=0, this t square=0. So it is a singular point of this equation

and how to check that it is a regular singular point. For that, you divide by t square and look at

the coefficient of dy/dt, so it means that when you divide by t square, it is reduced to d2y/dt

square+1/t dy/dt+t square-p square/t square y=0. So here it is your pt and it is your qt. So tpt is

what? tpt=1 here. So we say that it is analytic.

Similarly, you can look at t square qt, that is t square qt=t square-p square here. So here this is

also having a series expansion or we can say that tpt and t square qt both are analytic and in fact

here this  series expansion have only one term that  is  p not=1 and here we have 2 terms in

expansion of t square qt and here q not=-p square. So here we can say that since t=0 at regular

singular point as pt=1/t and qt=1/t square t square-p square are not continuous at t=0.

So this is another way to check that a given point is a singular point or not. So here we have to

check that pt and qt are not continuous function at t=0. So in this way also, we can check that t=0

is a singular point. Now t=0 is a regular singular point as both tpt and t square qt are analytical

function. So here tpt is 1 and t square qt is t square-p square and both are analytical function or

we can say that both are having Taylor series expansion here, t=0.

So it means that it satisfies the condition, which we have discussed earlier that t=0 is a singular

point and t=0 is a regular singular point. So here assuming that yt=n=0 to infinity ant to power

n+r is a solution of this and then we try to find out the coefficients an and the possible values of

r, for which it acts as a solution here. So again do it in a same way, you calculate y dash t, y dash

t=n=0 to infinity n+r ant to power n+r-1 and calculate y double dash t, that is n=0 to infinity

(n+r) (n+r-1) ant to power n+r-2.
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So we can write ly as n=0 to infinity (n+r) (n+r-1) ant to power (n+r)+n=0 to infinity (n+r) ant to

power (n+r) going to pty dash and here it is qty that is submission n=0 to infinity ant to power

(n+r)-(n+r+2)-p square n=0 to infinity ant to power (n+r)=0 here. So here we can write, this is as

n=0 to infinity, we just collect the term of t to power (n+r) and t to power (n+r+2). So here we

write (n+r) (n+r-1)+(n+r). So here this term + this term + this term.

So when we calculate, it is (n+r)*(n+r-1)+(n+r)-p square ant to power (n+r), what is left is this

that n=0 to infinity ant to power n+r+1+2 that is retained here. So ly is given as this. So once we

calculate ly, then we can say that y is a solution of this provided that this quantity =0. So we need

to find out that this expression has to equate corresponding term of t to power n to 0 here. So first

look at the coefficient of t to power 0=0.

If you look at the coefficient of t to power 0=0, her we will get the lowest degree term is t to

power r here. So t to power r, when you put n=0 here, so when you put n=0 here, we have r*r-

1+r-p square*a0
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So that we are writing f(r)a0=0 that is r*r-1+r-p square a0=0. So if you simplify, this is what r*r-

1  that  is  r  square  –r+r-p  square.  So  it  is  written  as  r  square-p  square  a0=0,  so  that  is

corresponding to equating the coefficient of t to power 0. So equating the coefficient of t to

power 0, we have r square-p square a0=0. Similarly look at the coefficient of t to power 1 and

this we will get from this.

So here when you put n=1, then we will get the coefficient of t to power r+1 that is r+1*r+1+r-p

square, which we call as f(r+1). So here f(r+1) is given as a1=(1+r)*r+(1+r)-p square*a1. You

will not any contribution from this term. Because here n is starting from 2 here.
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So here if you look at here we are looking at this r, this is r+1 and here t to power r+n, so if you

look at the coefficient of t to power r, we are getting f(r)*a0. Coefficient of t to power 1+r is

given as f(1+r)*a1. Similarly look at the coefficient of t to power (r+n) coefficient of t to power

(n+r) is this quantity, which is nothing but f(n+r) an. Here we have this summation an-2, so this

is your coefficient of t to power n+r. That is what we are writing here.

So here we are writing f(n+r) an=(n+r) square –p square an=-an-2 and here we are writing n>=2

here. So here we are getting these 3. This is corresponding to t to power r, this is corresponding

to t to power r+1, this is corresponding to t to power (r+n), so first equation will give you the

possible values of r, for which we will get a solution here. So from equation 1, which is known

as indicial equation, so here this will give the value of r.
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So if you look at the values of r, will be r1=p and r2=-p square. So it is r square-p square=0, so it

is r+(-p), so r1 we are getting the p and r2=-p provided that p is >0. This we are assuming. So

here we are resuming that p>0 and 2p is !=1. It means that difference is not an integer here. So

here we are assuming that p is positive and 2p is !=1 here. So here, once we have the values of r1

and r2, then our next aim is to find out the coefficients.

So let us find out the case that r1=p. first we look at the r1=p and find out the coefficient and

then look at the case r2=-p, and then again we find out the coefficient. Let us look at r1=p, then



when r1=p, then the first equation will give you that a0 is nonzero. So we cannot calculate a0

value here, but when r=p, we can easily calculate using this formula, find out a1. So from here,

we can find out the value of a1 here.

So from this, if you put r as p, then it is (1+p) square-p square*a1=0. Now since this term is non

zero, so a1 has to be 0. So here we can say that this equation 2 forces a1 to be 0 and if you look

at the recurrence relation that is this, this will give you the values of an in terms of an-2. So you

can write an as –an-2/(n+r) square-p square, this expression is valid for n>=2 and in this case,

your r=p. So an is given as –an-2/p+ r square-p square.

We can observe here since a0 is non zero and a1=0, so using this expression we can write that a3,

which is given in terms of a1, it has to be 0, similarly all the odd coefficient has to be 0 here. So

we can say that since a1=0, all odd coefficients are 0 because of this recurrence relation. So we

need to find only a2 in terms of a0. So using a2=-n=2, so –a0/2+r, r is p here, (2+p) square-p

square that we are writing here.
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That 2 square (1+p)a0, we are taking 2 out, so let me write it here. an is what a(2n), I am writing,

that is a-a(2n-2)/(2n+t) square-p square. We can simplify this further an2n-2 and here we can

write 2n+p-p, so that is 2n*2n+p+p and this is valid for n=1, 2 and so on. So here I am writing



that in place of n, if we write 2n, then we can consider this. If you simplify this further then what

is a2n, a2n is going to be –a(2n-2) and 2 we can take it out, 2 square n*n+p, you will get.

So that is what we are using here. So a2 is –a0/2 square(1+p)*a0. Similarly you can calculate a4

using a2, so a4 is -a2 upon 2 square 2(2+p) and if you put the value of a2, then it is 1 upon 2 to

power 4 factorial 2(1+p)*a0 and so on. In this way, we can find out all the even coefficient.
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So once we have even coefficient,  we can write that our expression is like this,  a2n=(-1) to

power n 2 to power 2n factorial n(1+p)(2+p) up to (n+p). So once we have a2n, then we can

write down number solution as Y1(t) a0, here a0 is missing, a0 summation n=0 to infinity (-1) to

power n, we are writing this expression that is 2to power 2n factorial n(1+p)(2+p) up to (n+p)

and Y to power 2n+r, and r is p here, so it is Y1(t) is given as this.

For simplicity, if we take a0 as 1 up on 2 to power p up on factorial p+1, we will see why we are

choosing this value. We will discuss later on, so when we choose this value a0=1 up on 2 to

power p gamma p+1, then this expression will take a simpler form, that is here if we take a0 as

this thing it means that here it is (-1) to power n/2 to power 2n factorial n(1+p) up to (n+p)*a0

value is 2 to power p and factorial p you can write it here and y to power (2n+p) and summation

n=0 to infinity.



So we can simplify this as (-1) to power n as it is factorial n as it is, and this we can write is

gamma (n+p+1) here and here this Y to power (2n+p) is here and here also we have 2 to power

(2n+p)  so  we  can  write  y/2  power(2n+p),  and  we  using  this  special  value  of  a0,  this  will

represent a series expansion which call as Jp(Y), and this is known as Bessel's function of order

p of first kind.

So here using this value of a0 has this we have expression for Jp(Y) given as this n=0 to infinity

(-1) to power n/factorial n gamma (n+p+1)(Y/2) to power (2n+p). So this is the expression for

Bessel's function of order p, and this value a0, which we have taken is we can obtain using

orthogonal property of Bessel's function. So when we study this Bessel's function of order p,

there you can understand how to find out this a0 value.

Since it is valid for any a0, so in particular if you take a0 as this value, then this will take a

simpler form and which we are writing as Bessel's function of order p. Now look at the other

solution corresponding to r2=(-p).
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So we will get the other solution, but before that let us summarise this that when p=k, then 16

becomes Jk(Y) as summation n=0 to infinity (-1) to power n factorial n*(n+k) factorial (Y/2) to

power (2n+k), remember here, here we are writing k as integer value. But this expression is valid



for any real p, such that p>0 and 2p is !=1, so this expression is valid for any p, whether it is

integer or non integer.

But if p is an integer, then this gamma (n+p+1) is reduced to factorial  (n+p), that is what is

written here. So this is the expression of Bessel's function of order k and it is written like this.
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Now find out the second solution, here replace p by -p in 16 we get J(-p)Y=n=0 to infinity (-1) to

power n factorial n gamma (n-p+1)(Y/2) to power (2n-p). So here if you look at this is quite

symmetric, the only thing is that here we have just replaced p by -p. You can check that actually

we  are  getting  this  thing.  So  this  is  I  can  say  that  it  is  homework  that  the  other  solution

corresponding to r2=-p you will get the following expression.

So here we say that when p=k, then 17 becomes this and this is known as Bessel's function of

order -p or Bessel's second solution.
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Now as we have discussed earlier, that the method of Frobenius may not be able to find the

general solution of the differential equation in following 2 cases. So when r1=r2, then we may

not find out 2 Frobenius series method, it means that of course 1 series solution will be given, but

the other 2 may not be of the Frobenius series form. Similarly, when r1-r2 is a positive integer,

here also we have a possibility that 1 solution is given in terms of series, but other solution may

not be given in Frobenius series solution form.

So let us consider these cases, so first let us consider the equality case that when r1=r2, and in

this case we have only 1 solution of this form, that is Y1(t)=t to power r1 n=0 to infinity ant to

power n. We are not able to find out the second series solution, so the only thing we know is that

whatever  second solution  exists  must  be linearly  independent  to  this.  And here we say that

second linearly independent solution is given by Y2(t)=Y1(t)ln t+t to power r1 n=0 to infinity

bnt to power n, where bn, n>=0 are constant to be find out.

So here if you remember the case of Cauchy Euler equation, in Cauchy Euler equation if we have

a case of equal roots, then we know that solution is given in terms of Y1(t)lnt+Y1(d)lnt.
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So in this  if  you look at  this  solution,  second solution Y2(t)  here this  lnt  makes the second

solution a similar solution in at t=0. And most of the times we are not able to utilise in a full

swing, we say that to find out second solution we adopt a method similar to the method used in

finding a second solution of Cauchy Euler's equation, that we are going to find out.

So let us rewrite our equation 31 in the form that Y1(t,r) is given as n=0 to infinity ant to power

(n+r),  to  emphasize  that  the solution Y(t)  depend in our choice of r. So here of course this

solution is depending on, so when you take r=r1 we have a solution, when you take r=r2 we have

another solution. But in this case you write Y1(t,r) as this n=0 to infinity ant to power (n+r). Now

using this our expression is written as L(Y(t+r))=a0F(t)t to power r+n=1 to infinity an(r)F(n+r)

+k=0 to n-1((k+r)p(n-k)+q(n-k)ak)t to power (n+r).

So that is the simplification of the differential equation when you put Y(t,r) as the possible case

of solution. So we need to find out the possibilities of this r and he coefficient in a way such that

this expression is coming out to be 0. So we need to find out r and an in a way such that this

expression is gives out to be 0 value.
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So here we have to choose an(r) as 12 requiring that the coefficient of t to power (n+r) be 0, so it

means that a and +r is given like this. So this is the expression which we have already utilise that

F(n+r)*anr  is  given  as  k=0  to  n-1((k+r)p(n-k)+q(n-k))ak(r).  So  that  is  how  we  choose  our

coefficients an. So when we choose this coefficient an like this, then your this L(Y) is simplified

like a0F(t)t to power r, because we have taken our an in a way such that this expression is going

to be 0.

So choosing n in a way such that this expression is 0, then what we left is L(Y(t,r))=a0F(t)tr,

there is a small correction here that it is F(r)tr. So once we have made this choice, then we have

L(Y(t,r)) as =a0F(r)*t to power r.
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Now we know that in case of equal root F(r) is given as (r-r1) whole square, so it means that I

can write our previous equation as L(Y(t,r))=a0(r-r1) square t to power r. Now again we already

know that when Y=Y1(t), then we have a 0 of this, so it means that for r=r1 you already have a

solution.  So  it  means  that  L(Y(t,r))=0  and  then  we  have  a  solution  Y1(t)=t  to  power  r1

summation a0+ summation n=1 to infinity an(r1)t to power n, so that we already know.

So  one  solution  is  given  by  this,  to  find  out  the  other  solution  we  already  know  let  us

differentiate  this  equation  corresponding  to  r,  with  respect  to  r,  so  apply  del  L/del  r  of

L(Y(t,r))=L(del y/del r)(t,r). So here we already discuss that L is a differential operator in terms

of t. So if you apply differential operator corresponding to r it will go inside. So here we write

L(dy/dr)(t,r) so if you differentiate (dy/dr) it is a0(d/dr)(r-r1) square t to power r, because in right

hand side we have this.

So here we have L(dy/dr)(t,y)=a0[2(r-r1)t to power r+(r-r1)square (ln t)t to power r], and if you

put r-r1, then right hand side =0. So it means that dy/dr at r=r1 will give you a second solution.
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So how to find out a second solution, so dy/dr at r=r1 is also a solution, so it means that Y2(t)

which is given as d/dr(y), y1 is already given, n=0 to infinity an(r)t to power(n+r) at r=r1 will

also give a solution. So simplify this expression, so what you will get n=0 to infinity, now an is

also depending on r, so here when you differentiate this you will get what, an(r1)t to power

(n+r1)(lnt). Here I am just differentiating this t to power (n+r).

So here we are getting to power (n+r1)(lnt), and then differentiate this an(r), so we get n=0 to

infinity an dash (r1)t power (n+r). So here what you will get this you write as n=0 to infinity, so

an(r)t to power n you are taking out and differentiating t to power r, so differentiating t to power r

means t to power r (lnt)+summation n=0 to infinity t to power (n+r) as it is, then differentiate an

that is an dash (r), so that is what we are writing here.

So we can write this as here if you simplify what is this, if you look at this is what an(r1) t to

power (n+r1) if you look at this then this is nothing but Y1. So the first term is written as Y1lnt

and second term is written as n=0 to infinity an dash (r1) t to power (n+r), so it means that the bn

is nothing but an dash(r1).  So it  means that  here second solution is  given by Y1lnt+n=0 to

infinity an dash (r1)t to power (n+r), and here this we are able to get because we have already

discussed the similar case in case of Cauchy Euler equation.



So here we have seen that 1 solution is given by Y1(t), then another solution is given by Y2(t) as

dy/dr, r=r1 and it is having this expression Y2(t)=Y1lnt+n=0 to infinity an dash (r1)*t to power

(n+r). So as claimed this is having the form which we have already claimed, the only thing is that

bn is now replaced by an dash(r). So here I will stop here and we say that in case of equal roots

we are not able to find out both the solution as Frobenius series solution form.

So 1 solution is given in terms of Frobenius series solution, but the other solution is not the

Frobenius series solution form. So in equal roots we have second solution given by Y2(t), and

general solution we can find out using Y1 and Y2, and in next class, we will discuss an example

based on this and the other case, that is when r1 and r2 differ by an integer, so in next class we

will continue this lecture. Thank you very much for listening us.


