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Hello friends, welcome to this lecture. In this lecture, we will discuss the Frobenius series

solution method for second order linear differential  equation,  and we are considering this

Frobenius  series  solution  method  for  the  case  when we have  a  point  which  is  a  regular

singular point.

(Refer Slide Time: 00:54)

So how we can understand, if you look at the equation like P0(t) y double dash (t) + P1(t) y

dash (t) + P2(t)y = 0, so this is a second order linear differential equation where P0(t), P1(t)

and P2(t) are some continuous function in terms of t, a point t = t0 is set to be a singular point

of this, if P0(t0) = 0. So when we have a singular, then we say that t = t0 is a singular point of

this ordinate differential equation.

If in addition to this, if (t-t0) P1(t)/P0(t) and (t-t0) square P2(t)/P0(t), if these 2 functions are,

function in the neighbourhood of (t-t0), then we say that t= t0 is a regular singular point and

we want to find out the solution in the case of when t = t0 is a regular singular point. So that

we are going to do in this lecture here.

(Refer Slide Time: 02:23)



So here our aim is to find the class of singular differential equation, which is more general

than the Euler equation. So 1 example of the t = 0 is a regular singular point for this Euler

equation, if you look at t square d2y/dt square + alpha dy/dt + beta y = 0. So if you look at,

then I can write this as, that here your t = 0, at t = 0 this t square is vanishing so it is a

singular point for this equation, and if you look at this alpha t/t square * t, here t0 = 0.

So here t0 = 0 and if you look at this is nothing but alpha, and if you look at t square beta

upon t square, then it is a beta. So we can alpha and beta are constant function and hence we

can say that it is having a Taylor series expansion. So it has only one component that Taylor

series expansion and we can say that here t0 = 0 is a regular singular point for this Cauchy

Euler equation.  And here we have already solved this Cauchy Euler equation in previous

lecture.

Now we can simplify this equation number 1 in the following form, here we simply divide it

by t square, here we are resuming that t>0 or t<0, t not=0, we can say. Then here when we

divide by t square, then it is d2y/dt square+alpha/t dy/dt+beta/t square y=0. And here we can

generalise this equation in the following form that d2y/dt square+p(t)dy/dt+q(t)y=0. Here p(t)

and q(t) can be generalised form of alpha/t and beta/t square in a following way.
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So here p(t) is written as p0/t+p1+p2t+p3t square and so on. So basically here, we are adding

a kind of power series in terms of t. And if you look at q(t), q(t) is q0/t square now we are

adding terms q1/t+q2+q3t+q4t square and so on. So we can say that p(t) and q(t) has these

kind of series expansion. So the expression 3 is said to have a regular singular point at t = 0,

if p(t) and q(t) have series expansion of the form 4 and 5.

Equivalently, t=0 is a regular singular point of 3 if the function t p(t) and t square q(t) are

analytic at t = 0. So here we can define this regular singular point in 2 ways, that either this

p(t) and q(t) is having this kind of series expansion like 4 and 5, or you can say that t p(t) and

t square q(t) are having Taylor series expansion at t=0, so both have an equivalent meaning.

So equation 3 is said to have a regular singular point at t=t0, so this is what we have defined,

regular singular point of t = 0.

Now if we have a non zero singular point, then in that case the function (t-t0)*p(t) and (t-t0)

square q(t)  must  be analytic  at  t=t0,  or we can say that  (t  -  t0)*p(t)  has a  Taylor  series

expansion in terms of (t-t0), and (t-t0) square q(t) must have a Taylor series expansion around

(t-t0) square. And a singular point of 3 which is not regular is called irregular. So the meaning

that these analytical at t=t0, means here I can write (t-t0) p(t) as summation ak(t-t0) to power

k, k is from 0 to infinity.

Similarly your (t-t0) whole square q(t) = summation bk(t - t0) power k, k=0 to infinity. So it

means that t=t0 is said to be a regular singular point, if it is a point of a singular point, and



this (t-t0) p(t) and (t-t0) square q(t) must have this power series expansion in terms of t-t0.

And we want to find out the solution in which case we have this kind of expression.
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So now let us generalise the method used to find the general solution of the Euler Cauchy

equation to a more general singular differential equation of this form y double dash + P(t)y

dash + Q(t)y = 0, and here one or both of the coefficient function P(t) and Q(t) is not analytic

at t=t0, means first thing is that t=t0 is not a regular point or not an ordinary point. So we can

say that here P(t) and Q(t) is not analytic at t=t0.

And the  ideas  developed  above suggest  that  we should  try  for  a  formal  solution  of  this

following form, which is known as Frobenius form. If you look at in this case of Cauchy

Euler  equation here we have take P(t)  as alpha/t  and Q(t)  as beta/t  square and we got a

solution of t to power r. Now we are generalising our P(t) and Q(t) in a way that P(t) is

written as p0/t+p1+p2t and so on.

So we are adding a kind of power series solution to our function P(t) and Q(t). So we can say

that here corresponding to solution, if we talk about we must add some kind of t to power r is

already a solution, then we can add t to power r + 1, t to power r + 2, and so on, these term if

we add in a solution then we might have get a solution. So keeping this in idea, let us take

solution as Y(t) = t to power r summation n = 0 to infinity an tn.

And without loss generality we are assuming that a0 is not = 0, because if a0 = 0, then it is

what, then we can write t to power r and n is start from 1 to infinity an t to power n. And we



can write again it in this form, so it need a without loss of generality we are assuming that the

first term of the series is basically nonzero. And here we are assuming that modulus of t > 0.
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So it means here what we are assuming so for is that t = 0 is a regular singular point and it

means what, that t = 0 is a singular point first of all, it must be a singular point and second

thing is that function tP(t) and t square Q(t) are analytic function at t = t0, in an aboard of t =

t0, means what that tP(t) have Taylor series expansion like n = 0 to infinity Pn t to power n

and similarly t square Q(t) is also having Taylor series expansion that is n = 0 to infinity Qn t

to power n.

To get a solution, we need to know possible values so for, for which we have a solution of our

differential equation and which 7 is a solution and then for each value of r. So first we have to

the find out the values of r for we have a solution and then for each values of r, we need to

find out the coefficients. And it means what that let us try for this solution Y(t) = summation

n = 0 to infinity an t to power n + r.

So first our attempt is to find out this r for which it is a solution and then we will try to get 2

kinds  of  values  r1  and  r2  and  corresponding  to  each  r1  and  r2  we  try  to  find  out  the

coefficient corresponding to r1 and coefficient corresponding to r2. So this we need to find

out and once we are able to find out the r1 and r2 and the corresponding coefficients we can

write down solution Y(t) as summation n = 0 to infinity anr1 t to power n+ r1 and similarly

the other solution.
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So let us identify, how to find out the coefficient for these r1 and r2, so for that let us assume

that this is a solution, so differentiate it, Y dash(t) = n = to infinity (n + r) ant to power (n+r-1)

and differentiate again to get Y double dash(t) and it is = n = 0 to infinity (n+r) (n+r-1)ant to

power (n+r-2). So once we have Y(t), Y dash (t), Y double dash (t), we calculate P(t) Y dash

here and Q(t)Y.

So P(t)Y dash is what, it is 1 upon t, n = 0 to infinity Pntn, here since we already know that

tP(t) is having series solution and = 0 to infinity Pntn. So P(t), I can write 1/t and = 0 to

infinity Pntn*Y dash (t) that is, n = 0 to infinity (n+r) ant to power (n+r-1). And which we can

write it here as t to power r-2, here we are taking r-1 out and 1/t is already there, so it is t to

power r-2*n = o to infinity Pnt to power n*n = 0 to infinity (n+r) antn.

Now here we multiply 2 power series to get the following form that is n= 0 to infinity k = 0 to

n (r + k) akp(n-k). Here how we multiply this power series, if you look at, if we have 2 power

series like this ak t to power k * summation bk t to power k, then we will have a series like ck

t to power k where ck is given as summation n = 0 to k here and ak and bk-n here. Here we

have assumed like this.

So we are using this formula that ck must have, if you look at a term here, then sum is going

to be, sorry here it is an so it is an bk-n, if you look at this sum is going to be k-n+n is going

to be k here. So here ck must have this kind of form, using this formula here we are writing

that n = 0 to infinity Pntn * n = 0 to infinity n+r antn. Now I want a coefficient of t to power

n, so it means that I am finding cn. So cn is going to be what?



Summation if k is from 0 to n here and then here you find out in this we find out pk, so here

we can say that this is bk and this is ak. So here we can write that n, here it is (r+k)ak, this we

are writing and other one is (n-k), so it is P(n-k). So if you look at this k and (n-k) is going to

be, if you sum them it is going to be n here. So cn is going to be k = 0 to n, here you can write

bk and a(n-k), it is kind of symmetric thing.

So here it is, I will write it, this is your ak and this is bk if you write it like this, then here we

can write it this product formula as n = 0 to infinity k = 0 to n (r+k) ak, consider this as 1nk,

and this as b(n-k), so that is what how we write it, this product. So P(t)Y dash is written as t

to power (r-2) summation n = 0 to infinity and coefficient of t to power n is given as k = 0 to

n (r+k) akp(n-k)t to power n.
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Similarly, we can calculate Q(t)Y, so Q(t)Y is 1 upon t square summation n = 0 to infinity

qntn * summation  n = 0 to infinity  an t  to  power (n+r).  Here again we apply the same

formula,  so here this  t  to  power r  we have taken out,  so we can  write  t  to  power (r-2)

summation n = 0 to infinity, and here again we will find the coefficient of t to power n. And

how we can find out coefficient t to power n, this is your ak and this is your bk.

So ak and b(n-k), b is what, qn here, so q(n-k) ak, so k = 0 to n, q(n-k)ak. Now we can

simplify this further. We are writing k = 0 to n-1, so we are taking the term corresponding to n

out. So we can write q(n-k) ak + if you take k=n, then it is what q0antn, will understand why



we are writing this. So once we have this Y dash(t), Y double dash(t) calculate P(t)Y dash and

Q(t)Y, then we plug in all these value in your differential equation.
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So here using this expression for Y double dash, P(t)Y dash and Q(t)Y in 6, we have the

following differential equation by taking out the common factor t to power n-2. So it means

that here t to power r-2, I am writing here, so t to power r-2 * this thing. So here in bracket it

is  what,  n=0  to  infinity  (n+r)(n+r-1)+(r+n)p0+q0+k=0  to  n-1(ak)(r+k)p(n-k)+q(n-k)*t  to

power n = 0.

(Refer Slide Time: 16:49)

If you look at this I can write it like this, so here we have what, we have Y double dash(t) +

P(t)Y dash + Q(t)Y = 0. So Y double dash(t) is what, Y(t) is our summation an t to power

(n+r), n is from 0 to infinity, so we can easily find out Y dash(t) = summation (n+r) (n+r-1) an



t to power (n+r-2), sorry this is Y double dash(t), so n = 0 to infinity. So here we have just

calculated the Y double dash(t) and P(t)Y dash is basically what?

P(t) is t to power r-2 summation here we have calculated (k+r)ak and p(n-k) and it is what

summation n is from 0 to infinity and is k from 0 to n, and here we have t to power n. So that

is how we have calculated P(t)Y dash, if you look at here we have calculated P(t)Y dash is

this t to power (r-2) n = 0 to infinity k = 0 to n (r+k)ak p(n-k) * t to power n, that is what I am

writing here, that n = 0 to infinity k = 0 to n (k+r)ak p(n-k)t to power n.

Similarly, we can calculate Q(t)Y, Q(t)Y is again t to power r-2 summation n = 0 to infinity

summation k = 0 to n and here we have bk and q(n-k) and t to power n here. So when you

plug in this value, then what you will get, here we will get summation (n+r)(n+r-1)an t to

power (n+r-2) n is from 0 to infinity + P(t)Y dash is again if you multiply t to power r-2

inside you will get what, summation n is = 0 to infinity, summation k = 0 to n (r+k)ak p(n-k) t

to power (n+r-2).

Similarly, you can write it summation t to power r-2, n-r-2, so n+r-2 * summation k = 0 to n

bk q(n-k) and, we have already written t to power n+r-2 and it is = 0. So here if you simplify

this, then this is what we are getting here, that t to power r-2 if you take it out, so n = 0 to

infinity (n+r)(n+r-1)+ here corresponding to this, we are taking the term here, if you put k = n

value here, then I can write this k = 0 to n-1 + the term corresponding to k = n.

Similarly, here also corresponding to k = n we can take the term out. There is a small problem

here, I think it is ak not bk, so it is ak here, similarly here it is ak, so this is the correction

here. So here we are writing this in 2 terms k = 0 to n-1 and k = n term, so and here also we

are writing the same thing. So in this way we are getting the following formula n = 0 to

infinity (n+r)(n+r-1) + (r+np0+q0) + k =0 to n-1 (ak) and it is r+k p(n-k) because of P(t)Y

dash and + ak*q(n-k) because of Q(t)Y * t to power n = 0.

Now we can simplify it further, we can write n = 0 to infinity (n+r)(n+r-1) an tn+n = 0 to

infinity k = 0 to n-1 (r+k)ak p(n-k) + anp0(r+n) that is what we have written already here t to

power n + n = 0 to infinity k = 0 to n-1 akq(n-k) + q0an, this is corresponding to k = n term, t

to power n that is, this is the expression which we have simplified in this manner. So now

since if you look at the left hand side and right hand side and since in left hand side we have



this  expression  and  in  right  hand  side  we  have  0  so  it  means  that  the  corresponding

coefficient of t to power n is going to be 0.
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So using this, equating the coefficient of t to power n to 0 what we get an (n+r)(n+r-1), so

here if you look at here we just calculate the coefficient of t to power n here. So what you will

get (n+r)(n+r-1)an and here coefficient of t to power n is anp0(r+n), here what you will get

q0an. So here we are writing an*(n+r)(n+r-1)+(r+n)p0+q0+ now we look at this term, here

k=0 to n-1 (r+k)akp(n-k)+ k=0 to n-1 akq(n-k) that we are writing here.

So here we are writing an n+r (n+r-1) + (r+n) p0+q0+k=0 to n-1 akq(n-k)+(r+k)p(n-k) that is

= 0. So here we are trying to show that equating the coefficient of t to power n to 0, we get

this following form, that an*(n+r) (n+r-1)+(r+n)p0+q0+k=0 to n-1 akq(n-k)+(r+k)p(n-k)=0,

and we can work it out here, we can work it out like this here we have already calculated

Y(t), P(t)Y dash, Q(t)Y dash, Q(t)Y and we have plugged in all these values.

And we have this following thing, n=0 to infinity (n+r)(n+r-1)an t to power (n+r-2) that is the

expression for Y double dash(t) that we have calculated here + expression for p(t)Y dash that

is n=0 to infinity k=0 to n (r+k)akp(n-1)t to power (n+r-2), so that is the expression for P(t)Y

dash and then we write down the coefficient expression for Q(t)Y that is t to power (n+r-2)

k=0 to n akq(n-k)=0.

Now if  you  further  simplify  this  then  here  we  have  n=0  to  infinity  (n+r)(n+r-1)an  t  to

power(n+r-2) so this is nothing but Y double dash(t) + n=0 to infinity, now we simplify the



coefficient of this t to power (n+r-2) in P(t)Y dash as follows, you write k=0 to n-1 and this is

(r+k)akp(n-k) and the corresponding term k=n we are writing here, that (n+r)anp0 that we are

taking out + n=0 to infinity.

Similarly, we are doing for Q(t)Y, so k=0 to n-1 here and akq(n-k) and this  is  the term

corresponding  to  k=n  here.  So  this  for  k=n  and  here  also  it  is  k=n,  writing  anq0*t  to

power(n+r-2) = 0. Idea is to collect the term an at one side and term which is < a0 to a(n-1) in

other side. So if we simplify, then we are writing t to power r-2 * n=0 to infinity, now collect

the coefficient of an t to power n.

If you look at what you will have, here we have (n+r)(n+r-1) and here what do you have, here

we have (n+r)p0 so that is I am writing here, and here we have q0 so here we writing q0 ant

to power n + now we are writing the remaining term that is n=0 to infinity and term which are

left here that is k=o to n-1 (r+k)akp(n-k) here we have this thing and the term here that is

akq(n-k)t to power n = 0.

So now again simplifying this t to power r-2 summation n=0 to infinity, now (n+r)(n+r-1)+

(n+r)p0+q0*an+ what we are doing, we are taking out this t to power n term out + summation

k=0 to n-1 (r+k)p(n-k)+q(n-k)akt to power n. Here if you look at in this term, if you start

from k is 0 to n-1, then here we are getting term from a0 to a(n-1). So here we are just

collecting the term coefficient of an and here it is the coefficient of ak where k is from 0 to n-

1, so this is the coefficient of t to power n.

So it means that coefficient of t to power n has to be 0, so this quantity has to be 0 for each n.

So here  we say  that  equating  the  coefficient  of  t  to  power  n  to  0 we get  the  following

expression that we have just looked at. Now we will start from coefficient of t to power 0,

coefficient of t to power 1 and so on. So if you look at the coefficient of t to power 0 is going

to be a0(r(r-1)+rp0+q0) that we can look at here in this way.

Here if you look at coefficient of, here if you put n=0, then you will get what r*(r-1)+ here we

will get p0r+q0 here. So this is the coefficient of, a0(r(r-1)+rp0+q0)=0, so here we will not

get any contribution from this. So here we are just using this expression for n=0, so here we

get a0 into this expression. Now if we call this as F(r), that is F(r) is denoted as r(r-1)+rp0+q0

and this expression we call as indicial equation same as in Euler-Cauchy equation.



If  you remember  in  Euler-Cauchy equation,  we also have the similar  form. So here F(r)

represented by r(r-1)+rp0+q0, so if we take this expression as F(r), then we can write now

this as a0*F(r)=0.So here we have already assumed that this a0 is non zero so that coefficient

of t to power 0 has to be 0 provided that F(r) has to be 0, so that gives you the following

thing.
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Now since a0 is non zero so 10 is true only when F(r)= 0, that is r(r-1)+rp0+q0=0, now this is

a quadratic equation in r and will give 2 roots r1 and r2, and here just for sake of simplicity,

we are assuming that whatever be the value of r1 and r2 we assuming that r1 is the larger of

these 2 roots, so r1 >= r2 that we are assuming here. So these roots, called the exponents of

the differential equation 6 at the regular singular point t=0

So r1 and r2 are known as exponent of differential equation at regular singular point t=0. So it

means  that  that  will  give  you  exponents,  once  you  have  exponents,  then  look  at  the

coefficient of t to power n and equate it to 0. So here we again use this thing a1(r+1), so here

what we are using, here we are using this expression again, so here n=1, if you put a1*(1+r)

here  it  is  (1+r-1)+(1+n)p0+q0  and  here  when  you  put  n=1,  then  you  will  get  term

corresponding to k=0, so here you will get a0qn+pn.

So here we are getting this we are using n=1 and here we are using expression for n=0. We

are using 9 for n=1, so we are getting this equation a1*(r+1)r+(r+1)p0+q0+a0rp1+q1=0. And

we already know that this a0 is non zero, so we can write a1 and if you use this expression for



F(r),  then  this  is  nothing  but  written  as  F(r+1).  So  we  can  write  this  equation  as

a1*F(r+1)+a0rp1+q1=0. So once a0 is non zero you can calculate  the value of a1 in the

following way provided that F(r+1) is non zero.

(Refer Slide Time: 31:12)

So we can write in this way we can look at the next coefficient of t2 is 0, and we can write

a2[(r+2)(r+1)+(r+2)p0+q0]+a0[rp2+q2]+a1[(r+1)p1+q1]=0.  Here  please  note  down,  this  is

again this equation number 9 for n=2. So here we are looking at equation number 9 and for

coefficient of t to power 0, put n = 0 and for coefficient of t to power 1, put n = 1 and

coefficient of t square we are putting n = 2.

So we are looking at this equation number 9 again and again, and we are getting equation

number 11 and similarly we can get this expression. So this we can write in terms of F(r) as

a2F(r+2)+a0(rp2+q2)+a1[(r+1)p1+q1]=0, so if we know the values of a0, a1 we can get the

value of a2 from this. Similarly equating the coefficient of t to power n is 0 we have this

following expression,  an[(r+n)(r+n-1)+(r+n)p0+q0] and this  is  the  expansion form of  the

formula this term.

So here we can expand in the following way, so a0(qn+(r+n)pn) + a1 and so on, so that is = 0.

So idea is that using this equation number 9 and the fact that coefficient of t to power n = 0,

we are trying to find out the coefficient a0, a1, a2 and so on and provided that this can be

possible provided that F(r+n) is non zero.
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So here we can simplify in this way that anF(r+n)+k=0 to n-1 ak(q(n-k)+(r+k)p(n-k))=0. So

this equation 11, 12 indicate that the coefficient of a1 is given in terms of a0, a2 is given in

terms of a0 and a1, and so on. So the an's are depending on r, if you look at here, here r is

involved, so we can say that an's are depending on r and the coefficient,  which we have

already obtained that a0, a1 up to a(n-1).

This can be possible when this coefficient of an is non zero, provided that F(r+n) is nonzero,

for some positive n. In that case, we cannot utilise 12, if this F(r+n) = 0, then I cannot utilise

this equation number 12 to find out the value of an. So it means that here if r1=r2+n, here I

am assuming that r1 is bigger than r2, so if r1=r2+n for some integer, which is n>=1, the

choice r=r1 will give a formal solution.

The  choice  corresponding  to  a  bigger  root  will  give  you  a  formal  solution,  but  choice

corresponding to the smaller root does not give a solution, why because when you apply r=r2,

then F(r2+n) is given as F(r1), which is = 0, so it  means that corresponding to r-r2, you

cannot find out an using the formula 12. Because an*0=something. So we will see that under

what condition this will also give a solution, that we are going to discuss this case.

So another case where we obtain only one formal solution from this form is the case when

r1=r2. So here you can find out the coefficient an using this formula, equation 12 provided

that the F(r+n) is = 0 and it is happening in what case. Here if r+n = 0. So it means that here

we have 2 values r1 and r2 and if r1=r2+n, it means that when you are looking a solution



corresponding to r=r2, then when you put an, then an*F(r2+n)is going to be F(r1), that is

going to be 0, then this expression.

So if this expression is non zero, you cannot find out a solution, but if this expression is 0,

then we can look at some possible way to find out the solution an. Another instance where we

may not get the other formal solution in the Frobenius series solution form is the case when

both roots are equal roots, so it means that when r1=r2 because I can have only one an, using

this formula, we can calculate and we do not have any method to find out the other formal

solution.
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So we will discuss these 2 cases in a separate way. So in all other cases where r1 and r2 are

real  numbers,  the  above  presented  procedure  give  2  independent  solution  of  6  and

consequently if F(r)=0 has 2 real roots r1 and r2, when r1>r2 and they do not differ by an

integer. It means that your r1 is bigger than r2, but r1=r2+some n, where n is some integer. In

this case, we have 2 linearly independent solutions and corresponding to r1 and r2, we can

have a solution like this.

Where with t=t2 power r1 summation n=0 to infinity an(r1)t to power n and corresponding to

r2, we have Y2t, that is t to power r2 from n=0 to infinity an, r2 t to the power n and these

solutions have radius of convergence r, minimum of r1 and r2 where r1 and r2 represent the

radius of convergence for tpt and t square qt, because tpt and t square qt are having power

series expansion, so it must have a radius of convergence.



So if you take the minimum, then that is going to be the radius of convergent of the solution

here, that is the guarantee of this method. We are not going to prove the following statement,

but you take this as a given thing. If F(r)=0 has 2 roots, r1 and r2 and these are different and

they are not different by an integer. In that case, we have Frobenius series solution given in

the following form, y1t=t to power r1, n=0 to infinity an(r1)tn, and y2t=t to power r2 n=0 to

infinity an(r2)tn.

And this procedure gives you that this series solution is valid in a reason having radius of

convergence r, minimum of r1 and r2 where r1 and r2 are radius of convergence of tpt and t

square  qt  respectively.  So  in  this  case,  we  have  2  Frobenius  series  solution  method

guaranteed. So here I will finish. We will continue this in next class. Thank you very much.


