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Lecture - 11
Solution of Homogeneous Linear System with Constant Coefficients-III

Hello  friends,  welcome  to  my  lecture  on  solution  of  homogeneous  linear  system  with

constant coefficients. We shall discuss the case of equal roots of the characteristic equation in

this lecture. So if the characteristic polynomial of a matrix A does not have n distinct roots

then A may not have n linearly independent eigen vectors, for example let us consider the

matrix A = 110, 010, 002.
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Then you can see that it is an upper triangular matrix, it is diagonal elements are therefore it

is eigen values so the diagonal elements are 112 and therefore it has eigen values 112 okay.

Now corresponding to eigen value lambda = 1 if you find the eigen vector then what you get.

A-I * v = 0 so you subtract identity matrix from A and what you get is 010, 000 and then 001.

So this is v1, v2, v3 and you get 000 here and what you get is okay.

So v1*0 v2*1 + v3*0 = 0 so you get v2 = 0 and then second equation is 0 equation, third

equation gives you v3 = 0 and thus v = v1 v2 v3 reduces to v100 okay, or we can write it as

v1 times 100, so taking v1 = 1 you have an eigen vector 100 corresponding to eigen value

lambda = 1 and for lambda = 2 similarly you can find an eigen vector 001. So you see here

that we do not have 3 linearly independent eigen vectors corresponding to the eigen value.



Eigen values 112 only 2 linearly independent eigen vectors we have so how to find n linearly

independent solutions of the vector differential equation x dot = Ax that is the question, okay.

So thus if you consider the vector differential equation x dot = Ax it will have only 2 linearly

independent solutions of the form e to the power lambda t corresponding to lambda 1 = 1 we

got one vector which is 100.

(Refer Slide Time: 02:59) 

So one solution you get and then corresponding to lambda = 2 you got one eigen vector 001,

so you get another linearly independent solution of the form e to the power lambda t * v. Now

therefore we need to find a third linearly independent solution because in order to write the

general solution of the vector differential equation x dot = Ax we need to have n linearly

independent solutions of this equation.

And here A is the 3 * 3 matrix so we need 3 linearly independent solutions. Now in general

suppose that the n * n matrix A has only k < n linearly independent eigen vectors then the

differential equation x dot = Ax has only k linearly independent solutions of the form e to the

power lambda t * v. Therefore, we need to find n – k linearly independent solutions in order

to write the general solutions of the vector differential equation x dot = Ax.

We know that if you take these scalar first order differential equation x dot = Ax where A and

x are scalars then xt = c times e to the power At is the solution of this equation that you can

see it easily, you have dx/dt = Ax, so that gives you dx/x = Adt and so when you integrate we



get lnx = lnt A times At + constant let us take lmc then you get x = c times you have, so lnx =

At + lmc so x = c times e to the power At.

So x = c times e to the power At is the solution of this equation. Analogously x t = e to the

power At * v is the solution of the vector differential equation x dot = Ax for a constant

vector v. Let us see how it is the solution of this vector differential equation. First of all let us

see the definition of e to the power At.
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E to the power At where A is n * n matrix, is defined as I + At + A square t square/2 factorial

and so on and A to the power n t to the power n * n factorial and so on where I is an identity

matrix of the same order as A that is I is the identity matrix of order n. Now it can be shown

that the infinite series which is giving e to the power At it converges for all t and can be

differentiated term by term.

Now if you find d/dt of e to the power At * v what you get you see d/dt of e to the power At *

v so this is = d/dt of e to the power At means I + At + A square t square/2 factorial and so on.

A to the power n, t to the power n/n factorial and so on * v where v is the constant vector. So

when we differentiate with respect to t what we get? This is independent of t so this will be 0.

So we get At when we differentiate this with respect to t we get A + A square * 2t/2 factorial

* 2t/2 factorial and then so on A to the power n * n, t to the power n-1/n factorial and so on v,

okay, or I can write it as A * I + here we have At then we have A to the power n-1, t to the



power n-1/n-1 factorial and so on v, okay, so this is e to the power At. So we get A * e to the

power At * v that is the derivative of e to the power At * v.

So d/dt of e to the power At * v is A times e to the power At * v and since we can write it as e

to the power At okay * Av so what we get, we have to write it as this is A e to the power At *

v. So what we have d/dt of e to the power At * v is A * e to the power A2 * v and therefore

our differential equation is dx/dt = Ax. So in this if we replace x by e to the power At * v

what we get is d/dt of e to the power At * v = A times e to the power At * v that is what we

get here.

So e to the power At * v is the solution of the vector differential equation 1 for every constant

vector v.
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Now we can easily show that e to the power At inverse = e to the power –At and e to the

power At + s = e to the power At * e to the power As, e to the power At + Bt = e to the power

At * e to the power Bt if AB = BA. This we can see very easily. See e to the power At * e to

the power –At if you write what we get I + At+ A square t square/2 factorial and so on and

then we multiply by e to the power – At so on I – At + A square, t square/2 factorial – A cube

t cube /3 factorial and so on, okay.

So we multiply by I first so I + I At + A square, t square/2 factorial and so on then –At. So we

get –At then we multiply –At here so –A square t square then we multiply –At here so –A

cube t cube/2 factorial and so on then you multiply by A square t square/2 factorial so you get



A square t square/2 factorial okay, then A cube t square/2 factorial and then you multiply by A

square t square so A4 t4/2 factorial square and so on and you get like this.

So At will cancel with At A square t square/2 factorial + A square t square/2 factorial is A

square t square, so it will cancel with A square t square. Similarly, A cube t tube/3 factorial

okay –A cube t cube/2 factorial and then –A cube t cube/3 factorial so what we will get all the

terms will cancel except I and what we get is e to the power At * e to the power –At = I. So

we can say that e to the power At inverse is = e to the power –At.

And similarly if you multiply the series for e to the power At and then the series for e to the

power At you will get the series for e to the power At + s, but her when you multiply e to the

power At * e to the power Bt then you need AB = BA in order to get e to the power At + Bt.

So e to the power At + Bt is true only if AB = BA, so e to the power At + Bt is e to the power

At * e to the power Bt provided AB = BA.

Now let us look at these 2 matrixes A-lambda I * lambda I same as lambda I * A-lambda Iy

because A lambda I is lambda A okay and then – lambda * lambda is lambda square I square

so we get lambda square I so lefthand side is this and righthand side is what, lambda * IA that

is lambda * A and then lambda I * lambda I is –lambda I square I square so lambda I square I.

so lefthand side and righthand side are same.

So A- lambda I * lambda I = lambda I * A-lambda I, so A-lambda I end, lambda I commute

okay where lambda I is constant. Now using this property e to the power At * B is e to the

power A - lambda I * t + lambda It, okay, e to the power At = e to the power A - lambda I t +

lambda It. Now use this property, A - lambda I and lambda I since they commute okay, we

can write it as e to the power A - lambda I * t * e to the power lambda It. 

So e to the power At can be written as e to the power A - lambda * t * e to the power lambda

It because A - lambda I and lambda I commute and we are using this property e to the power

At + vt = e to the power At* e to the power vt. Now e to the power lambda It = e to the power

Lambda t * v this we can see very easily e to the power lambda It.

Let us write e to the power lambda It * v this is equal to we have I + lambda I t + lambda

square I square t upon 2 factorials and so on * v. So what you get is so this is v + okay I v = v



and then lambda t * v I v = v again then lambda square I square t square here okay, so lambda

square t square I square * v is v so lambda square t square/2 factorial * v and so on or I can

write it as scalar 1 + lambda t + lambda square t square/2 factorial and so on * v.

Which is = e to the power lambda t * v, okay. So e to the power lambda I t * v is e to the

power lambda t * v and therefore e to the power Atv = e to the power A - lambda It * e to the

power lambda t * v. Now e to the power lambda t is a scalar quantity so we can write it

outside this matrix,  e to the power lambda t * e to the power A - lambda I t v okay. So

ultimately what we have e to the power Atv = e to the power lambda t * e to the power A

-lambda It * v, okay.
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Now suppose A - lambda I mv = 0 for some integer m then e to the power Atv = e to the

power lambda t * v + t times A - I v + and so on t to the power m - 1 A - lambda t raise to the

power m – 1 * v and then m-1 factorial, this we can see from the previous equation we have e

to the power At * v = this okay, so we have e to the power A - lambda It * v. This is what we

have, e to the power At * v = e to the power lambda t * e to the power A - lambda I * t

operating on v.

So this equal to e to the power lambda t and let us write the expansion series for this, so I + A

- lambda I t + A - lambda I whole square t square/2 factorial A - lambda I whole cube t cube/3

factorial and so on, okay, t to the power m A - lambda I raise to the power m-1 v upon m-1

factorial and then we have t to the power m A - lambda I to the power m v upon m factorial



and then so on, t to the power m+1 A - lambda I to the power m+1 v upon m+1 factorial and

so on.

So here I should not have written v, v we can write outside here, okay. So then what happens

is when this series operates on v, you get v + t times A - lambda I * v you get e to the power

lambda t v + t times A - lambda I v + t square/2 factorial A - lambda I whole square v and so

on. We get t to the power m-1 A-lambda I to the power m-1 v upon m-1 factorial and then we

have t to the power m A-lambda I to the power m v upon m factorial and so on.

Now if v satisfies A - lambda I m v = 0 for some m for some positive integer m then what

will happen this term will be 0, t to the power m * A - lambda I to the power mv/m factorial =

0 and after this we will have t to the power m+1 A-lambda I to the power m+1v upon m+1

factorial that term will also be 0 because you can operate on this equation by A-lambda I so

that you get A-lambda I to the power m+1 v =0.

So if A-lambda I to the power n * v = 0 for all n >= m+1, so this A-lambda I to the power m *

v = 0 implies this = 0 for all and >= m+1 so this series will then reduce to this series okay. All

terms starting with the power of t as m and more will vanish and we will have e to the power

At*v = e to the power lambda t v + t times A-lambda I * v and so on t to the power m-1 A-

lambda I to the power n-1 v/m-1 factorial.

So there will be only m terms inside the bracket. Now let us see how we can find n linearly

independent solutions of the vector differential equation x dot = Ax.
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So in order to find additional solutions suppose we have k solutions in linearly independent

solutions in order to find n–k solutions we pick an eigen value lambda of A and find all

vectors v for which A-lambda I whole square v = 0, but A-lambda I v is != 0 okay. So for

each such vector e to the power At * v = we have seen just now e to the power At * v = e to

the power lambda t * e to the power A-lambda * t * v will reduce to e to the power lambda t *

v + t times A-lambda I * v.

Because we are assuming that A-lambda I whole square v = 0 so here m = 2 and this means

that only v + t times A-lambda I * v will remain inside the bracket all other terms will vanish,

So we will have e to the power At*v = e to the power lambda t * v + t times A-lambda I * v

this will give us an additional solution of x dot = Ax. Now we do this for all eigen values

lambda of A.

If we still do not have enough solutions that is we do not get all n solution then we find all

vectors v for which A-lambda I raise to the power 3 v = 0, but A-lambda I whole square v is !

= 0. For such vector v, e to the power At * v will then give you e to the power lambda t * e to

the power A-lambda I * t * v which will reduce to this okay, so this e to the power A-lambda I

* tv will give you this expression inside the bracket.

All other terms will vanish so e to the power At * v will be e to the power lambda t v+t times

A-lambda * v + t square/2 factorial A-lambda whole square v which will give us an additional

solution of x dot = Ax.
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Now proceeding in this manner we obtain n linearly independent solutions of the equation x

dot = Ax. So let us now take an example where x dot = Ax is given, A is a 3 x 3 matrix, so our

aim will be to determine 3 linearly independent solutions of this vector differential equation,

so here A = 110, 010 and 002, okay. Let us note that A is a upper triangular matrix so the

Eigen values of A are the diagonal elements of A.

The diagonal elements of A are 112 these are the diagonal elements and this is an upper

triangular  matrix.  So the diagonal  elements are the eigen values of A okay. The diagonal

elements of an upper triangular or lower triangular matrix are it is eigen values. The diagonal

elements of A are 112 so we have the eigen values of A 112. Now let us find the eigen vector

for lambda = 1 so we have to consider A-I v =0.

We have this 110, let us find A-I v = 0 so what we will get this will give you 010, 000 and

then 001. So here you can see v2 = 0 and v3 = 0 so we get the eigen vector v as v100 and you

can take it as 100 so we get corresponding to eigen value lambda = 1 we get an eigen vector

100.
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And therefore we can have one solution of the equation x dot = Ax we know that xt = e to the

power lambda t * v, okay, if lambda is an eigen value and v is the corresponding eigen vector

of the matrix A then xt = e to the power lambda t * v is the solution of x dot = Ax. So one

solution x1t will be = lambda is 1 here so e to the power t and the eigen vector we have taken

as 100 so we have 1 solution e to the power t * 100.

Now to find the other linearly independent solution,  you know one solution we shall  get

corresponding to lambda = 2 okay, but corresponding to lambda = 1 we have got only one

linearly independent solution so let us find one more solution corresponding to lambda =1. So

what we do is to find the other linearly independent solution. We find those vectors v for

which A-lambda whole square v = 0 so that A-lambda I v is != 0 where lambda = 1.

This we are doing for lambda = 1. So what we will do is let us find A-lambda I whole square.

Lambda I is 1 here so A-I whole square v = 0 gives you if you write A-I matrix so A square

will be = 110, 010, 002 and you multiply 110, 010, 002 so what you get when you multiple

100 here what you get is 100. When you multiply 110, when you multiply you get 1 + 1 that

is 2 and 110 here we get 1*00, 1*11 okay.

And then 110 you multiply 002 so we get 0 and then 002 when we multiply we get 0 here and

002 we multiply here we get 0 and here we multiply we get 4. So A square, this is A- oh I do

not need this I need A-I whole square, sorry I need A-I whole square, so A-I whole square is

010, 000, 001 and 010, 000, 001 so let us see what it is. First column is 000, so when you



multiply to the all rows here you will get the first column as 000 and then 100 you multiply

so 100 will give 0 here, 100 will give 0 here, 100 will give here again 0.

And 001 you multiply you get 0 here you multiply you get 0 and here you multiply you get 1,

okay, so we get this matrix. So A-I lambda A-I whole square v =0 gives you 000, 000, 001 v1,

v2, v3 = so what we get v3 = 0 and so v = v1, v2, v3. So v1, v2 are arbitrary and we get v3 as

0 here, okay, now I can write it as v1 times 100 + v2 times 010, so one solution for A-lambda

I whole square v can be taken as 100.

The other solution can be taken as 010, but if you take 100 then we have seen A-I 100 = 0

because A-Iv = 0 gives a solution 100, so A-I 100 = 0 so this condition will be not valid if we

choose 100, so let us choose 010, okay, so let us take solution of A-lambda I whole square v =

0 such that A-lambda I v != 0 as 010, okay.
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So we take the solution and yeah this is what I have written v = linear combination of these 2

vectors and if we take this 100 transpose then A-lambda I v = 0 so we take 001 transpose and

then A-lambda I v which is A-lambda I v is != 0 this you can check A-lambda I v is != 0 if

you take v to be 001 vector, okay.
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Thus x2 t = e to the power lambda t lambda is 1 here and then what you have okay, x2t let us

find, so x2t we have to find, okay, so in order to find x2t what we have e to the power lambda

t that is e to the power t * we have taken 010 okay, so 010 now e to the power t we can write

as e to the power t, e to the power A-I * t, we have x2t = e to the power t * e to the power A –

okay, so this is e to the power At.

Because x2t is e to the power At * 010 this is a solution of this, so x to the power A-I * t this

is e to the power t so I + A-lambda I * 010 also we have to write so A-lambda It + and then

A-I whole square, this is v here and this is t here, so t square A-I whole square/2 factorial v

and so on this reduces to e to the power t I + t times A-I * v and here also v, here also v, okay,

so what we get, e to the power t then we have v is 010 so 010 + t times.

So you put the value of A-I here t times A-I * v, v = 010, what we get is e to the power t times

t10. So e to the power t * t10 is another solution of the equation and for lambda = 2 we have

the equation A-2I v = 0 if we solve this we will get v = 001 transpose, so third solution is x3t

= e to the power 2t 001 so thus we have 3 linearly independent solutions.
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How they are linearly independent see x1t, x2t, x3t are linearly independent because x10 is

100, x20 is 010 and x30 is 001, you can see, x30 is 001, x20 is 010 and x10 is 100. So these 3

vectors are linearly independent vectors in R cube and therefore x1t, x2t, x3t are linearly

independent. Now so the general solution we can write xt = c1 times x1t + c2 times x2t + c3

times x3t and when you add the 3 column vectors what you get is this column vector, okay.

So this is the general solution of the given vector differential equation. Now in the case of

this initial value problem x dot = 213, 02-1, 002 x x0 = 121 you can see that lambda = 2 is an

eigen value of A with multiplicity 3.
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A = 213, 02-1, 002 it is an upper triangular matrix so it is eigen values are it is diagonal

elements and which are 222 so eigen values of A are 222, okay that is lambda = 2 occurs with

multiplicity 3.
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Now eigen vector for lambda = 2 if you find then you will see that A-2I v = 0 gives you

solution by v = 100, so e to the power 2t 100 is 1 linearly independent solution of x dot = Ax.

Since A has only one linearly independent eigen vector we get one solution, to find other

linearly independent solution we find those vectors v for which A-lambda I whole square v =

0 such that A-lambda I v is != 0, lambda = 2 here.

So now consider A-2I whole square v = 0 then we find, so A-2I is this 213 okay, so A-2I will

give you what, A-2I will give you 013, 00-1, 000 and when we multiple 013, 00-1, 000 what

we get. So this will give you 000 first column is 000 when it is multiplied 2 rows will give

you first column as 0 then 100, 100 will also give 000 and then 3-10 will give what, 3*00-1*1

is -1 and then 3-10 will multiply to this.

This is 0, this is 0, this is 0 and this is also 0 so what we get A-2I whole square this is, okay.

So A-2I whole square v = 0 if you do then what you will get? So we get v3 = 0 that means v1

and v2 are arbitrary okay. So v1 and v2 are arbitrary means we can take v as 100 or we can

take v as 010 okay. Now corresponding to lambda = 2 the one solution that we have got is

what 100. So if you choose 100 here then A-2I v will be = 0.



Okay, because we have already seen that so let us choose 010 okay, corresponding to lambda

A-2I square v = 0 and A-2I v != 0 so if you choose v as 010 then A-2I v will not be = 0 so we

can consider this vector okay, and when you do this then what will be x2t, so x2t will be = e

to the power At * v, v is 010 we are taking okay, so e to the power 2t and then e to the power

A-2t * A-2I t 010 so this gives you what?

E to the power 2t times I + A-2I t and then 010, okay, so we get e to the power 2t 010 okay +

A-2I, A-2I is the matrix 013 and then we have 00-1 and then we have 000 * 010 * t, okay so

this is what we get. So e to the power 2t 010 and then 010 when you multiply here what you

get 010 you multiply so you get 01 here and 010 when you multiply here you get 0, 010 you

multiply here you get 0 and you get t here.

So what you get e to the power 2t t10, so one solutio is this we have got okay.
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Now so we have x2t = e to the power 2t t10 this is one another solution. Now we have to still

get one more solution because A-2I whole square v has given only 2 linearly independent

solutions so let us consider A-2I whole cube v = 0. So when you consider A-2I whole cube v

= 0 such that A-2I square v is != 0 then A-2I whole cube v = 0 gives you what? A-2I whole

square is this.

If you multiply again A-2I what you get 00-1, 000 and 000 and we multiply to this 013 and

we multiply 00-1, 000 okay so this  is A-lambda I whole cube.  So what do you get first

column vector is 0 so vector, so we get 0. Second 100 gives you 0 and third 3-10, 3-10 when



you multiply here you get this okay, so A-lambda I whole cube v = 0 okay, A-2I whole cube v

= 0 when we do what we get 000, 000, 000 and then v1, v2, v3 = 0.

Okay, so v1, v2, v3 are arbitrary vectors here okay, so now we can consider then v1, v2, v3 is

the linear combination of 100, 010 and 001, okay, so 100 we already have got 100 vs solution

of A-2I * v = 0, 010 we got as a solution of A-2I whole square v = 0 so here we want that

vector for which A-2I whole square v is != 0 okay, but A-2I v cube = 0 so this we cannot take

because for this vector A-2I v = 0.

So A-2I whole cube v will be = 0, A and A-2I whole square v will also be 0 and this vector

also we cannot take so let us take 001, so we take here v = 001 and for this we then find the

solution, third solution x3t = e to the power At * v.
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So we get 001 and we write it as e to the power 2t, e to the power A-2I * t 001 and then we

write e to the power 2t I + A-2I * t + A-2I whole square upon 2 factorial * t square other

terms will vanish operating on 001. So you know the value of the matrix A-2I, you also know

A-2I whole square so substitute here this I is identity matrix when you take this product of

these 2 matrixes this matrix *001 what we get is this x3t as e to the power 2t 3t-1/2 t square –

t1.
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So what we get xt now is the linear combination of these 3 linearly independent solutions x1t,

x2t, x3t. Now we use the initial condition, the initial condition is x0 = 121, so when we use

x0 = 121 we will have c1 x10 + c2 x20 + c3 x30, okay, c1 times. Now x10 is what, you put t

= 0 here, so we get 100 and here you put t = 0 then but you get 010 and here you put t = 0

then you get 001.

So we get 100, 010 and 001, so what we get is c1 c2 c3, so then c1 = 1, c2 = 2, c3 = 1, so put

these values of c1, c2, c3 here okay, you get the solution of the initial value problem.
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So the solution of the initial value problem is xt = e to the power 2t times this column vector

1+5t - 1/2t square 2-t and 1, so this is how we solve the homogeneous vector differential

equation with constant coefficients in the case where the characteristic equation has equal



roots, so in the next lecture we shall discuss nonhomogeneous vector differential equation

with constant coefficient. Thank you very much for your attention.


