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Lecture – 36
Green's Theorem

Hello friends. So, welcome to the 36th lecture of this course and in this lecture I will

discuss about Greens theorem. As you know that in the previous lecture, we have learn

about the some applications of line integral, where we have seen work done by a force in

moving a particle from a point to another point.

And then we have seen conservative vector fields; means how can we calculate work

done  in  case  when  the  force  is  conservative.  Today  we  will  see  another  thing  for

calculating the line integral over a closed curve and we will see that we can calculate the

line integral over a close curve just in form of a double integral and vice versa. So, let us

start with the statement of Green’s theorem.
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So, let C be a piecewise smooth simple closed curve bounding a region R. So, here C is a

smooth simple and closed curve and it is bounding the region R in a plane; let us say in

x-y plane.  If  f,  g,  del  f  over del  y and del  g  over  del  x;  all  these functions  are  the

functions of x and y; all these are continuous on the region R. Then the line integral over



the closed curve C f dx plus g dy will be equal to the double integral over the region R

and where integrate each del g over del x minus del f over del y.

Here the integration being carried in the positive that is the counter clockwise direction

on C. So, let us see the proof of this theorem.
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So, here we are assuming that we are having a simple closed curve C, which is bounding

a region R. So, let us assume this is our region R. So, this is curve C which is having the

orientation in counter clockwise direction,  this is the region R. So, let  us denote this

region in this way. So, my x is going a to b and let us say this r 1 x and this is the curve r

2 x. So, this region R is given as y is between r 1 x to r 2 x and here x is between a to b. 

Now the line integral over the whole curve C that is line integral of f dx plus g dy that is

basically capital F dot d R; where capital F is defined as f component in I direction and g

component in y j direction. This equals to double integral over the region R del g over

del x minus del f over del y and then dx dy. So, let us try to integrate del f over del y over

the region R. So, over this region I can write y is going from r 1 x to r 2 x means I am

taking a strip in this way.

So, lower limit of y is r 1 x; upper limit of y is r 2 x and x is from a to b; del f over del y

into dy dx. This equals to x equals to a to b and then after integrating I can have f of x r 2



x minus f of x r 1 x dx. This I can write limit is from a to b f of x r 2 x dx and then here

plus I am signing interchanging the limit. So, I am taking from b to a f of x r 1 x dx.

So, what we are doing? We are moving R to x from a to b. So, in the clockwise direction

and then from b to a, I am going through b to a through R 1. So, I am completing this

closed curve, but in the clockwise direction. So, it means this is equals to integral over C

minus f dx.
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So, here I obtained at del f over del y over dx dy; this equals to now c f dx. So, let us say

this is relation number 1. Let us see this region in another way where we will be having

the constant limit for y and variable limits for x.

So, let us take the same closed curve and the same region. So, here; so, let us say c to d

and again counter clockwise direction. Let us say this is u 1 x or I will say u 2 x and u 1

x. So, I am having the same region R the same closed curve which is bounding this

region R that is C; only I have change now the representation of this particular region in

this way. Here my y is between sorry; x is between u 1 y to u 2 y. And then I will be

having y between c to d. Now what I will be having? Again I will calculate the double

integral over this region R.

And now I will take del g by del x; that is the this one this term dx dy. So, I will take a

strip like this that is the strip in horizontal direction. So, this equals to u 1 y to u 2 y;



these are the limits of x and then the limit of y c to d; del g over del x dx dy. This equals

to integral from c to d.

And when I it will become g of u 2 y y minus g of u 1 y y and then dy. This I can write c

to d g of u 2 y y dy plus d to c. So, I have taken the, I have interchange the limit; so, this

minus become plus and then g of u 1 y y dy. So, what we are doing? We are going from c

to d along u 2 y; means in this direction and then from d to c, I am coming allow u 1 y.

So, basically it becomes integral over c g dy. So, here this thing becomes, so, let us say

relation number 2.
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Now, what we are having from first and second? I can write it by adding first and second.

So, I can write I can take this minus here. So, minus f dx plus g dy over the curve c; this

equals to double integral over the region R del g over del x minus del f over del y dx dy

and this is the relation of Green’s theorem.

So, in this way we can prove this theorem which is quite simple while considering a

region and a closed curve bounding that region; taking the two different representation

and just following this process.
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So,  we  can  generalize  the  result  of  Green’s  theorem for  more  general  regions.  For

example, if you are having a region like this. So, here you can divide this region in two

parts; let us say R 1, R 2, R 3. So, here you can have this representation like this in the

counter clockwise direction and for the second one, I can have like this and for the third

one it will become like this.

So, in this way I can prove Green’s theorem for such kind of region also following the

same process. Another region may be like this; so, it is this smooth here and then this

kind of region. So, again divide this region into different parts. So, let us say R 1, R 2, R

3, R 4 ok and here again I will take, so, here again I will take the representation like this

in this direction. So in the counter clockwise orientation of the closed curve bounding

these regions and finally in this way. So, again I can prove the Green’s theorem for each

of  the  different  region and finally  I  can  add the  results;  to  get  the  proof  of  Greens

theorem for the complete region. So, hence I show you the two examples of different

region.
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So, the result of Green’s theorem can be extended to a more general regions R. The

region R is a decomposed into finite number of subregions like R 1, R 2 up to R n such

that each region can be expressed in both the ways. Both the ways means the constant

limit in x and variable limits in y and vice versa. I have given two examples just now.

Now we will take some examples on Green’s theorem.
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So, my first example is evaluate the line integral over a closed curve C x y dx plus x

square y 3 dy; where C is the curve that is the boundary of the triangle having vertices 0,



0;  1,  0 and let  us say zone 1,  2.  So,  here and is  the boundary in  counter clockwise

direction. So, that we are assuming here; so this is 0, 0; 1, 0 and 1, 2. So, I am having this

triangle. This is the orientation of closed curve C and this is curve. So, here C is not a

smooth curve, but it is piece wisely smooth. We are having three arc of C 1 is from 0, 0

to 1, 0 that is a smooth 1, 0 to 1, 2 that is. So, let us say C 1, C 2 and C 3.

So, if I need to calculate this particular line integral, I need to calculate this integral first

for C 1, then for C 2 and finally, for C 3 and then I need to add the these results. Another

way of doing it let us apply the Green’s theorem. So, here if I compare this with the

statement of Green’s theorem; I can write f equals to xy and g equals to x square into y

cube.

So, from here I can have del f over del y as x and del g over del x as 2xy cube. So, now,

according to Green’s theorem, the line integral of xy dx plus x square y cube dy over this

curve C can be written as the double integral over the region R; where R is this region

bounded by these three lines in the region of the triangle. So, this is and then del g over

del x that is 2xy 3 minus del f over del y that is x dx, dy. This is quite simple region, you

can take either the vertical strip or the horizontal strip. So, let us take variable limits in y.

So, I am taking the vertical strip. So, this line is y equals to 2x; so, this equals to 0 to 2 x

and x is going from 0 to 1 twice x y cube minus x dy and an dx. After simplifying this I

will get this integral as 2 by 3; so, in this way we can solve this line integral in a very

simple manner just by applying the Green’s theorem ok.
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Let us take one more example with different kind of boundary. So, again evaluate the

line integral over the closed curve C and it is given by y 3 dx minus x cube dy; where C

are the boundary of the two circles of radius 1 and 2 having centers at the origin ok. So,

let us sketch our region; so, if this is my x and y coordinates. So, I am having a circle of

radius 1; center at origin, so, this circle, another one this one. So, basically C is given by

these two boundaries.

So, this is the region bounded by C and it is a bit difficult if I apply Green’s theorem

directly not Green’s theorem; if I calculate the this line integral directly using the usual

process of calculating line integral. Here I will apply Green’s theorem again; so, here if I

compare this particular line integral with the statement of Green’s theorem.

So, here f of x y is y 3; g of x y is minus x cube. So, from here del f over del y comes out

to be 3y square and del g over del x comes out to be 3 minus 3x square. So, from the

statement of Green’s theorem, y 3 dx minus x 3 dy equals to the region R bounded by the

curve c, del g over del x that is minus 3x square and then I will be having minus del f

over del y, so, 3 y square dx dy.

So, I am having this one; this can be I can take minus 3 out. So, R x square plus y square

dx dy. And now since I am having the circular region, so, I can convert my variables into

polar coordinate. So, x equals to r cos theta and y equals to r sin theta. So, this becomes x

square plus y square as r square; dx dy as r d r d theta and then now limits for r is from 1



to 2; that is the radius boundary of the inner circle to the boundary of outer circle. I will

take a radial strip like this; so, which is starts from here and move up to here. So, r equals

to 1 to 2 and theta will move from 0 to 2 pi. After simplifying this I will get the value of

this  double integral  as minus 45 times pi upon 2. So, in this  way we can solve this

particular a very difficult problem if I see it in terms of line integral only, but using the

Greens theorem, I can solve it in a very simple manner. 
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Let us take one more example, this is another type of question we can have on Green’s

theorem.  So,  verify  Green’s  theorem  for  this  particular  vector  function  where  the  i

component is e raised to power minus x time sin y and the component in j direction is e

raised to power minus x cos y. Here the closed curve is give is a square boundary of a

square having vertices 0, 0; pi by 2, 0; pi by 2, pi by 2 and 0, pi by 2.

So, here if we compare with the Green’s theorem statement, my small f is given by e

raised to power minus x sin y and small g is e raised to power minus x cos y. Hence, if I

calculate the right hand side of the Green’s theorem that is the double integral over the

region R which is the square given by these vertices; del g over del x minus del f over del

y dx dy. This comes out to be minus 2 times 0 to pi by 2, 0 to pi by 2 e raised to power

minus x cos y dx dy and finally, after simplifying it; it is 2 times e raised to power minus

pi by 2 minus 1.



So, this is the result of right hand side. Now what for the verification of Green’s theorem,

I need to calculate left hand side also and it should be equal to the result of right hand

side. Now if we see the closed curve c; so, it is not smooth, entirely smooth, but it is

piece wisely smooth. It is having four arcs; one is from 0, 0 to pi by 2, 0 another one

from pi by 2, 0 to pi by 2, pi by 2. So, these are the straight lines; horizontal and vertical

in the horizontal  and vertical  directions and they are smooth.  So, it  means I  need to

calculate for line integrals one for each line and then I need to add them.
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So, let us say I am having these the first arc C 1; where y 0 and x is between 0 to pi by 2.

The second curve or second arc is x is pi by 2. So, the vertical line at x equals to pi by 2

and y is moving from 0 to pi by 2; third one is y pi by 2 and x is going from pi by 2 to 0.

So, please note that here I am having counter clockwise orientation of the closed curve C

and then finally, C 4 is given by this one. So, here F 1 dx plus F 2 dy along the curve C 1

is 0; since sine vanishes in the first part and dy equals to 0 on the y axis; since y is

constant, 0 is here. Along the C 2 this comes out to be e raised to power minus pi by 2;

along C 3 it is e raised to power minus pi by 2 minus 1 and along C 4 it is minus 1.
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So, now, by adding all of these, I got the value of F 1 dx plus F 2 dy that is the left hand

side of the Green’s theorem and the line integral on this closed curve C as 2 times C

raised to power minus pi by 2 minus 1 and which is the same as the result of right hand

side; hence the Greens theorem is verified.

So, with this I will end this particular lecture. In the next lecture we will extend the idea

of line integral in terms of surface integral ok. So, like line integral is the integral along a

given curve.  In  the  same way surface  integral  will  become an integral  over  a  given

surface. So, with this I will stop myself.

Thank you very much.


