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Lecture - 09
Linear Transformation – I

Hello friends, welcome to this lecture in this lecture, we will discuss the concept known

as linear transformation. So, how we define linear transform? Let us discuss here. So,

here definition of linear transform goes like this. 

(Refer Slide Time: 00:39)

So, we take two vectors spaces V and W over a common scalar field; let us say F, we

may take F as a real number, here now we define a map as a function T from V To W,

and we call this map as linear transform; if for all alpha in a scalar field, and for all u v in

a vector space V; the function T satisfy the following property, that T of alpha times u is

equal to alpha operating on T of u, and T of u plus V is equal to T of u plus T of V.

Here this dot and plus are binary operation in V, and this and this are binary operation in

W. So, and we consider all linear map define over V to W, by this space L V comma W

and this denote the set of all linear transformation from V to W.



(Refer Slide Time: 01:52)

So, basically what is going here is we have a vector space V, we have a vector space W,

over the common vector field F, we can take F as R we can take any map T from V to W,

we satisfy the following two properties that T of alpha V is equal to alpha T of V here,

and second here the T of V 1 plus V 2 is equal to T of V 1 plus T of V 2. 

So, here without any ambiguity I am assuming that here operation between alpha and V

is  operation  defined  over  V, here  addition  is  an  operation  defined  over  V, and  here

operation between alpha and T of V is  a operation over W, and here this  plus is  an

operation in W. 

Now, here if we take both the vector space as same, if we take W is equal to V, then we

call  linear  transformation  T  as  linear  operator  and  the  corresponding  set  of  linear

operators is defined as L V to V is denoted by L of V. So, just take certain example, but

before that let us consider one definition of equality of linear transform.
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Which says that if we take 2 linear map is defined from V to w, then we call this S and T

are same, if T F x is equal to S F x for every element in vector space V. So, in this way

we can define the equality of linear transform, that map of T the map T and S gives the

same value for each element of vector space V.

Now, let us take certain example of linear transform, first example is identity operator

and 0 operator. So, identity operator is what it is define from V to V, and it maps V to the

same element V here, and we call this operator as identity operator, and 0 operator it

means it takes every element of vector space V to 0 element of V. 

So,  here  we call  this  operator  as  0  operator,  these  are  trivial  operators  you can  say

another example of linear transformation is given by differential operator, and integral

operator, what  is  differential  operator  and integral  operator,  T define from set  of  all

polynomials of degree at most n and it is given by T of f of x is equal to d by dx of f of x.

And integral of transformation S is given by, P n F to P n plus 1 F, where P n F is set of

all polynomials whose degree is at most n, and P n plus 1 F is the set of all polynomials

whose degree is at most n plus 1, and it is defined as S of f of x equal to 0 to x f of t d t,

and f x is coming from P n, and these 2 are linear transformation. I am just taking just

one example here let us take this differential operator. 



So, differential operator is defined as what differential operator is defined as t operating

on F of x and it is going to V f dash of x, to show that it at linear operator we try to check

these two properties. So, let us take alpha of f, and alpha of f is what d of d of x of alpha

of f of x now using the property of calculus you can say it is nothing but alpha of d by dx

of f of x, which says that first property is true similarly we can consider t of f of x plus g

of x, where f of x and g x is coming in from P n F. 

So, these are polynomials of degree at most n. So, this can be written as d by dx of f of x

plus g of x, and by say property of calculus, you can say that this is nothing but d by dx f

of x plus d by d x g of x, and which shows that this nothing but t of f x and plus t of g of

x.

So, it means that this operator this transformation define the; satisfy the properties listed

here. So, it means that this T is a linear transformation. So, similarly you can prove that S

which is an integral transformation n is also a linear transformation.
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Now, let us take a very simple property of linear transformation, it says that if we have a

linear transformation defined from V to d, then it send the 0 element of V to 0 element of

W, it means that image of 0 vector of V, will map to 0 vector of W; this has a very simple

proof. So, how we can go? So, using linearity we can prove this that T of 0 V is equal to

0 W. So, here by the property of vector space 0 of V can be written as 0 of V plus 0 of V.



So, and then operate T on this; so, T of 0 of V equal to T of 0 V plus 0 of V, now here we

can apply the linearity which says that it is nothing but T of 0 V plus T of 0 V. 

So, it means T of 0 is equal to 2 times T of 0 V, this implies that T of 0 V is nothing but

0, and this 0 is a element in vector space W. So, it means T of 0 V is equal to 0 of W. So,

this is a simple application of linearity property.
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So now let  us move to next theorem which gives you; which characterize the linear

transform, and it says that let V and W be 2 vector spaces over F. Let u 1 to u n be a basis

of V and let W i, i is from 1 to n be any set and this set may not be set of distinct element,

it may have only singleton element of vectors in W, then there is a unique linear map T

belongs to linear map from V to W such that T of V e V i is defined as W i. So, it means

what  this  theorem says that,  every linear  map can be characterized  by image on the

image of the basis element.

So, if we know what is the image of basis element, then you can characterize the whole

map T here. So, that is what is given here; so, let us first prove this theorem. So, what we

need to prove here that we know W i, then we have a unique linear map define in a way

that T of V i equal to W of i. So, let us prove this; so for that let V belongs to vector

space V, then there exist a scalar c one to c n coming from a scalar field f, such that V

can be written as linear combination of basis element of V. So, basis element u i V can

written as V as i equal to 1 to n, u i c i and if you look at in  the  matrix  notation  this



can be written as matrix u one to u n, and column vector c one to c n this can be written

like this. So, any way; so, this is another presentation of the same linear combination. So,

we can utilize any of these 2.

So, right now we are utilizing this representation that V is equal to i equal to 1 to n u i c i,

now with this linear combination and we know that this representation of V is unique.

So, with the help of this define T from V to W, such that T of V is equal to summation i

equal to 1 to n W i c i, this c i is nothing but these scalars, we already know that these

scalars are uniquely associated with the vector V. 

So, we can say that T of V equal to i equal to 1 to n W i c i now once we define this t, we

our claim is that it is a linear map and such a map is unique, but before that we try to

show that T of v i is equal to W i, now to write T of v i if you look at what is v I, v i can

be written us we already know that v is basically what v is your u i c i I is from one to n.

So, for this v we have defined T of v as summation i equal to 1 to n W i c i right.

So, this is how we define our linear map then we can write it u i is what, u i is simply a

summation i equal to 1 to n u i c i now here c i will be what let me write it here just a

minute i can write it u i as 0 times u 1 plus 0 times u 2 and so on, only one into u i rest

are all 0 and so on. So, if we follow this then T of u i will be what u i will be only i th

position it is one rest all 0. 

So, it means that. So, c i So, c one to c i minus 1 is 0, c i plus 1 2 c n n is 0. So, you can

write it here as summation i equal to 1 to n W i c i, and using this property you can say

that only i th position it is one rest all 0. So, you can say that it is nothing but W i. So, T

of u i is going to be W of i. So, this property is true.

So, we have we can show that T of u i equal to W i with this representation, now next

thing we want to prove here is that that T is a linear map, and second that such a map is

unique. So, we have already defined our map T we want to show that this T is a linear

map, and T is unique map, such a T is unique to show that linearity here, what we take

here let us consider here that we have a representation for v, then we can representation

for  say  W, which  is  given  by  summation  i  equal  to  1  to  n  u  i  say  b  i,  then  the

corresponding T of W is given by summation i equal to 1 to n W i b i.



(Refer Slide Time: 12:59)

And you can prove that that T of v plus W, now v plus W is basically what T of v plus W

is written as summation of i equal to 1 to n u i and c i plus b i, i can write it here, then

with this definition i can write this as summation i equal to 1 to n W i and the coefficient

here is c i plus b i, basically if you look at what is the relation here how we defined our

map here, we take v as summation i equal to 1 one to n u i c i. So, these c is are uniquely

represented uniquely associated with this basically these c is are coordinates of v with

the respect to u i.

So, using these coordinates we define T of v. So, T of v is basically what W i and these

coordinates. So now, if you look at here v plus W the coordinates of v plus W is nothing

but c i plus b i. So, with the help of these we can write the image of T of v plus W as i

equal to 1 to n W i and coordinates of coordinates of v plus W now this can be written as

summation i equal to 1 to n W i c i plus summation i equal to 1 to n W i b i and this is

nothing but T of V here, and this is nothing but T of W here. 

So, this part is now if you consider the alpha V, alpha V will be nothing but alpha of u i c

i and T of alpha V will be given by what T of alpha V is basically, what summation i

equal to 1 to n W i now coordinates of alpha V, V will be what coordinate of alpha V is

nothing but alpha c i.

So, you can write it here alpha c i. So, this can be written as summation i equal to 1 to n,

since alpha is independent of this suffix side. So, you can take it alpha out and this is



nothing but W i c of i and this is nothing but alpha times T of V. So, this satisfies the

properties of linearity. So, T of alpha V is nothing but alpha times T of V and T of V plus

W is nothing but T of V plus T of W. So, it means as such a map is a linear map. So, this

map T is a linear map. 
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So, to prove the uniqueness let us define another map say T dash from V to W. So, T

dash from V to W, such that T dash of u i is equal to W i and we want to claim that your

T dash is equal to T. So, by definition of so, to show this that T dash equal to 2 T we

want to show that T dash operating on any element of vector space V say V here. So,

take V and vector space V you want to show that T dash V is nothing but T of V here.

So, to show this let us move here. So, T dash now V is basically what V is we define as V

can be written as linear combination of u i. So, this can be written as i equal to 1 to n let

us say that this alpha i u i. So, here since V is an element of V here, we can write it i

equal to 1 to n alpha i u i. So, this is the presentation of V now this I can write it as T

dash. 

So, this I can write it here map T dash as say summation i equal to 1 to n alpha i now W

i, now we already know that this is what this is how we write as map of T of V now V is

what summation i equal to 1 to n alpha i u I, this is how we define our T of V, T of V is

defined as W i and coordinate of V corresponding to u i. So, here if u look at this will be



what this will be the image under T provided that alpha i are the coordinates of vector V

with respect to u i.

So, this can be written as this is nothing but T of V here. So, it means that we started with

T dash V and we are ending at T of V. So, here we can say that that T dash V is nothing

but T of V for all V in vector space V. So, this proves the uniqueness of a map having the

property that T of u i is equal to W of i.
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So now let us a take a corollary of this, which say that if we take a linear map from R n

to R, then there exist a vector from R n such that T of x can be written as a transpose x.

So, in other word we can say that it is kind of riesz representation theorem, which is

commonly  very  important  properties  in  function  as  is.  So,  it  is  nothing  but  riesz

representation theorem of a linear operator in terms of finite dimensional cases. 

So, here we want to prove this corollary. So, by previous theorem we know that T is

known if we know the image of T on a basis element.  So, let  us take the basis as a

standard basis. So, it means that image of basis element is given to us. So, it means that T

of e i is defined as a i. So, it means a i is known to us. So, with a help of this a i let us

form a vector a having this a one to a n as component. 

So, a is given to us then take any element in R n. So, element x equal to x one to x n

transpose t.  So,  let  us try to  define T of x.  So,  T of x so,  here x can be written as



summation of x i e i I is from one to n, now using the linearity here you can take write

the as i equal to 1 to n x i T of e i. So, T of e i is already known as a i; so, this is can be

written as i equal to 1 to n x i of a I, and this is this we can write i as a matrix product of

a transpose x, a transpose is what a transpose is column vector a one to a n and x is a row

column vector x one to x n here. So, this summation i equal to 1 to n x i a i can be written

as a transpose x.

So, it means that T of x given as a transpose x, thus the required result follows. So, it

means that whenever we have T as a linear operator from R n to r, linear map from R n to

R then there exist a vector a in R n such that T of x can be written as a transpose x here.
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So, let us consider another important result which we which says that, if we have linear

map  then  it  maps  linearly  dependent  map  to  linearly  dependent  set  to  linearly

independent linearly dependent set. So, statement of this theorem goes like this, that we

have a 2 vector space V and W defined on a same scalar field F and let T be a linear map

from V to W, and if S which is a sub set of V is linearly dependent, then the image of this

linearly dependent set is going to be linearly dependent.

Now how we define  the  image of  linearly  dependent  set  s,  it  is  basically  set  of  all

element T V V is in as. So, let us try to prove here, what we want to prove here that if S

linearly dependent then T S is linearly dependent provided that T is a linear map. So, we

already know the S is linearly dependent it means that we can find out a positive integer



say k, such that and such that V i belongs to S for i is one to k such that summation i

equal to 1 to k x i V i equal to 0, in the unknown x i is has a non-a trivial solution. 

So, this is the definition of linearly dependent set that if S is linearly dependent then we

can always find out say some vectors such that linear combination gives you 0, and this

has a nontrivial solution now let us call this call the nontrivial solution as x i equal to a i.

So, it means that summation i equal to 1 to k a i V i equal to 0 for some non-0 a i here. 

Now, we want to show that T S is linearly dependent, to show that T S linearly dependent

we want to consider the system i equal to 1 to k y i T of V i equal to 0, and we want to

find out a nontrivial solution of this equation, and for this let us consider this value i

equal to 1 to k a i T of V i and since T is linear, we can write this as the summation i

equal to 1 to k T of a i V i. 

So, here i am using the property of linearity, and then again we can use the property

linearity property and we can write as T of summation i equal to 1 to k a i V I, and we

already know this is nothing but 0 here this is already given here that summation i equal

to 1 to k a i V i equal to 0, and this is written as T operating on 0. Now T operation on 0

is nothing but 0; so, it means that summation i equal to 1 to k a i T of V i is equal to 0

and not all a is are 0, it means that some of a is are non 0. So, it means that this will give

that if we take consider this summation summation i equal to 1 to k y i T of V i equal to 0

then we have a nontrivial solution gives as y i equal to a i. So, it means that this T of V i

forms a linearly dependent set.

So, it means that that if we have a linear map then it  map linearly dependent set,  to

linearly dependent set.
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So, an corollary of this which says that if we have a linear map defined on a vector space

V to w, then it sends linearly dependent linearly independent set to linearly independent

set, it means that if we take any set S of V such that T S is linearly independent then S is

linearly independent. 

So,  how we  can  prove  this?  So,  this  proof  follows  from the  proof  of  the  previous

theorem. So, let us say that S is linearly dependent in place of what, we want to prove

here we want to prove that if T S is linearly independent then S is linearly independent. 

So, let  us assume the contrary let  us assume that S is linearly dependent in place of

independent let us assume that S is linearly dependent, then previous theorem apply here

if we look at previous theorem says that T map on S where S is linearly dependent then T

of  S  is  linearly  dependent,  but  here  what  we  have  assumed  here  we  have  already

assumed that T of S is linearly independent. So, it means that the assumption that S is

linearly dependent is not true S has to be linearly independent. 

So, we stop here and before stopping this; what we have discussed in today’s lecture?
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We have define linear map from 2 vector space V to w over a common scalar field say f,

which satisfy the following 2 properties that T of alpha V is equal to alpha of T of V, and

second is that T of V plus W is equal to T of V plus T of W. So, this is how we define

linear map linear transformation, we have discussed certain example and some properties

of linear map the important property is that if we have S which is the subset of V, as if S

is dependent, then T of S is also dependent and a corollary of this that if T of S is linearly

independent, then S has to be linearly independent. So, I will stop here and in next class

we will discuss more properties of linear transformation.

Thank you very much.


