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Lecture - 07
Bases and Dimensions-I

Hello, friends welcome to the lecture and in this lecture we will discuss some concept ah

basis and dimension, and if you recall in previous ah lecture we have discuss what do we

mean by a basis. So, there we started with a vector space say V define on a Say field F.
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And we say that B is a basis, of say V if 2 things satisfy first thing is the a span of B

whole is whole of V, and second thing is that B is a l i set and as an example, we have

discussed certain cases. First example, we have seen as set of all R n basically set of all n

cross 1 vectors. So, R n and here we have seen that this E i i equal to i is from 1 to n 1

less than i less than n is a basis here E i is nothing, but E i is equal to 0 say 1.

So, here we have at ith place we have 1 so here we have this is ith place, ith place. So,

we have seen that that in R n this set is a basis and it is known as standard basis for R n,

similarly we have seen another example of set of all polynomials of power of degree not

more than F, and here we have seen that set 1 x x n, the set forms a basis for set of all

polynomials whose degree is up to n and here we have shown that this act as a basis and.



It is also known as stand basis for this at P n F and we also seen the vector space of

matrices of size m cross n defined over this F, and here we have shown that E i j i is from

1 to m and j is from 1 to n, forms a basis for this vector space. So, here E i j is basically

what E i j is a matrix whose only nonzero entry is 1 at the position which is i th i j th

position. So, at i j th position it is 1 rest all 0, so i j th position means i th row and j th

column.

So, this we have discussed in last class now in continuation of this institution, let us

consider a next theorem which says that V if let V be a vector space.
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And beta be a subset of V beta consists of these element u 1 to u n, then beta is a basis

for  V  if  and  only  if  for  each  V  ah  vector  in  vector  space  V, we  have  a  unique

representation of V or we can say that each vector in V can be uniquely expressed as a

linear combination of vectors of beta or in other words V can be expressed in the form v

equal to a 1 u 1 plus a 2 u 2 plus a n u n for unique scalars a 1 to a n.

So, it means that if we take any vector in vector space V, then corresponding to this

vector  we  have  unique  scalars  a  1  to  a  n  says  that  we  can  be  written  as  a  linear

combination of these a i u i. So, this we wanted to prove and this is if and only if result.

So, first let us prove here that let beta be a basis and then we try to find out that we have

a unique representation.  So, just assume that beta is a basis and take any element in

vector space V, then V belongs to a span of beta because a span of since beta is a basis



then a span of beta is whole of V and V is a element of capital V. So, it means that V has

to be a element of a span of beta 

So, it means that V can be written as linear combination of the vectors of beta now let us

assume that we may have more than 1 representation it means that V can be written as

summation a i u i i is from 1 to n, and we can also write V in terms of b i u i from i is 1 to

n,  now  we  want  to  claim  that  these  2  representation  is  nothing,  but  the  same

representation it means that E i is same as b m.

So,, so let us take these 2 representation and we subtract these 2 representation and we

can have when we subtract here V minus V is simply 0 and here in the right hand side

what we have a 1 minus B 1 times u 1 plus a 2 minus B 2 times u 2 and so on ah.
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And we can get this kind of equation that 0 can be written as a 1 minus b 1 into u 1 plus a

2 minus b 2 into u 2 and so on. Now this implies that 0 has ah representation in terms of

u 1 to u n, now since u 1 to u n forms a basis it means that u 1 to u ends are linearly

independent vectors.

So, this implies that that 0 must have only a trivial representation it means what that the

coefficient of u is nothing, but 0. So, if coefficient of u is 0 means a 1 is equal to a 1

minus v 1 is equal to 0 a 2 minus v 2 is equal to 0 similarly a n minus b n is equal to 0,

and this simply these and equations will give you that a i equal to b i for all i from 1 to n.



So, it means that all constants a i is equal to b i. So, it means that these 2 representation is

nothing, but same representation. So, it means that if we have a basis then any vector can

be  represented  in  terms  of  basis  vectors,  in  a  unique  manner  now let  us  move  the

converse part. So, converse part is quite trivial, but let us have a small hint here, so, what

we  want  to  prove  here  that  if  we  can  any  vector  V  can  be  written  as  unique

representation in terms of elements of beta then beta has to be a basis here, so now we

want to prove that if any vector V.
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In vector space V has unique representation in terms of elements of this set beta here

then this set beta is nothing, but basis for this vector space V. So, here V has a unique

representation means V can be written as summation a i u i i is from 1 to n and these a i’s

are unique a i i from 1 to n 1 less than i less than n all these are unique scalars.

Now to using this we want to show that this set beta is a basis for this, now since it is

already given that any vector V can be written as unique in a unique manner in terms of

vectors of beta it means that a span of beta is full of v. So, it means that any vector can be

written as inner combination of ah elements of beta it means that a span of beta is whole

of V, the only thing we want to prove is that this beta is a linearly independent set.

So, for that we start with 0 and we try to find out say 0 as a linear combination of u is.

So, here let us say that 0 can be written as sum a i u i i is from 1 to n, we want to show

that if this all a is are 0 then we can show that u is are linearly independent. So, this can



be easily achieved by saying that  this  0 has another  representation,  representation in

terms of u u is that 0 times v 1 plus 0 times u 2 and so on.

Now,  we  already  know  that  every  vector  has  unique  representation  means  this  ah

representation is nothing ah different from this representation. It means that if we equate

the corresponding coefficient corresponding coefficient has to be 0 0. So, a i has to be 0

for all i ah equal to 1 to see n. So, here this implies that that if we take summation a i u i

equal to 0, then all a i has to be 0 which shows that all u is are linearly independent is

that.

So, this shows that if every vector V of a vector space V, can be uniquely represented in

terms of elements of this set beta here, then beta has to be a basis of this vector space V

this is very, very important result in terms of ah in, in terms of forming a basis that if we

have a finite generating set. Then ah our vector space V can be generated by a finite set

and ah, we can find out a basis from this finite set which is a generating set.

So, here we try to find out that a, a, a, a generating set a finite generating set S can be

reduced to find out a basis of this vector space V. So, let us look at the proof of this, so

here let us consider the trivial case, so let us say that if S is empty set.
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Or singleton 0 in this case a span of S is nothing, but 0. So, it means that since ah V is

generated by this is finite set S. So, it means that in this case V is nothing, but a trivial



vector space and in this case if V is a trivial vector space then we already seen that in this

case our species ah set is nothing, but empty set. So, we can set that embady empty set,

which is a subset of this S. In fact, empty set is a subset of each set, so we can say that

empty set is a basis of V. So, in case of when S is empty set or singleton 0 set, then we

can say that basis of V can be written as nothing, but this empty set.

Now, let  us move to nonzero ah non-trivial  case,  so let  us say that  let  S contains  a

nonzero vector say V 1, now since V 1 is nonzero, we already know that V 1 is linearly

independent set that is clear from the remark given in previous lecture. So, first remark if

you remember, then now let us extend this singleton set to the basis of vector space V.

So, now let us choose another vector say V 2 of V now this V 2 we are choosing in a way

says that it is not belonging to the span of this singleton V 1.

So, it means that V 2 can mean cannot be written as linear combination of this V 1, then

way we have already seen that in this case this V 1 union V 2 is a linearly independent

set, that is to will from the proof from a theorem which we have proved in a previous

class that if we start with a linearly independent set say S. And if we take any element

which which is not in S, then S union V is l d if and only if V belongs to span of S.

So, here using that result we can show that if we choose V 2 which is not belonging to

span of V 1, then V 1 union V 2 is a l i set. So, ah using this procedure we can proceed

and we can find out a set subset beta of set S, consisting V 1 to V k such that beta is

linearly independent set. And by adding any vector in beta we have a linearly dependent

set, and this we can ah always achieve because S is a finite set.

So, it means that it can go up to this set S now here ah here I am assuming, that this set S

is not a l i set, because if S is a l i set it is already a generating set then S is already a

basis, we can say that S is already a basis then here we need not to go for them. So, here

we are assuming that this S is not a l i set, so it means at s is l d set. So, it means that S is

l d set S is a finite set then we can always find out a subset beta of this head says says

that if we add any more vector in beta, we have a linearly dependent set this we can get

from the previous theorem which we have discussed in previous class.

Now, our claim is that this set beta which is subset of this S is a basis for V. So, how we

can prove we already know that this beta is l i by construction, what we need to prove

here is that beta is span the whole of V. So, we need to prove that span of beta is whole



of V, so to show that ah we already know that the span of S is whole of V. So, if we can

show that S is contained in a span of beta then we can say that span of S is contained in

span of beta and so can say that V is nothing, but a span of beta.

So, to show that S contained in a span of beta let us take a element of this capital S. So,

let us say this u belongs to this S now if u belongs to beta, means if u is already in this set

beta, then u will automatically belongs to span of beta. So, nothing ah we need not to

prove anything, but if u is not belonging to a span of beta. So, u belongs to S now if this

u is already in this beta then it will also belong to a span of beta.

So, ah you can say that S belongs to a span of beta, but if we can find out 1 u which is

not in a span of beta. So, it means that u is not in a span of beta, then ah by previous

theorem we can say that u union beta is a l i set, but our construction shows that beta

union u is a l i l d linearly dependent as we have already constructed our beta in a way,

that if we add any more vector it will be a l d set, but by previous theorem we can say

that if u does not belongs to span of beta then ah by u taking u along with this beta will

give you a a linearly independent set.

So, here we can get a contradiction and this contradiction we are getting because we are

assuming that u does not belong to a span of beta. So, u is belongs to a span of beta and

we can say that if u belongs to span of beta means S belongs to span of beta it means that

a S span of beta is nothing, but whole of space vector space V. So, it means that this beta

is a subset of this S, which is a basis for this vector space V.

So, this complete the proof of this theorem and again reiterating the importance of this

theorem too here, that if we start with a finite generating set S then every finite, this

finite generating set can be reduced to a find out a basis of this vector space V. So, now,

let us move to again a very important theorem that is a replacement theorem which says

that let V be a vector space.
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That  is  generated  by  a  set  G  containing  exactly  n  vectors,  and  let  L be  a  linearly

independent subset of V, containing exactly m vectors then m has to be less than or equal

to n what is m here m is number of vectors in linearly independent subset of V. And n is

what n is the number of element in a spanning set then m has to be less than or equal to n

and, there exist a subset H of G containing exactly n minus m vectors, such that L union

that subset H of G generate the whole of V.

Now, this can be understood in a way ah, if you look at the previous theorem previous

theorem says that a finite generating set can be reduced to a basis. Now this theorem says

that we start with a linearly independent subset of V and we can extend it to the basis of

a vector space V. So, previous theorem says the construction of basis from a generating

set, and this theorem says the construction extension of set a linearly independent set to a

basis of a vector space V both are very, very important.

So, the only thing is that from where we are starting, if we are starting from generating

set look at the previous theorem and if we are starting from linearly independent ah set

then we can look at this a replacement theorem.

So, let us try to prove this theorem the proof is by mathematical induction on m. So, the

induction begin with the say m equal to 0, and if we consider the m equal to 0 means the

number of element in this L i set is 0. So, in this case we can say that L is nothing, but

empty  set.  So,  if  L is  empty  set  said  we  know that  empty  set  is  basically  linearly



independent  set,  and span of  L is  nothing,  but  0.  So,  in  this  case your  subset  H of

generating set G is nothing, but same. So, here we can take H as whole of G. So, it

means that phi union with this G will generate whole of V, because it is already given

that G is the generating set of this vector V, so which gives the desired result.

Now, let us assume that that theorem is true for some integer m which is positive, we try

to prove that theorem is also true for next integer that is m plus 1. So, let us assume this

that let L is a linearly independent set, subset of V consisting of m plus 1 vectors, let us

say a call these vectors as v 1 to v m plus 1. So, if v 1 to v m plus 1 this if this set is

linearly independent, then any subset of this linearly independent subset is again linearly

independent that we have already seen.

So, remove this v m plus 1 then we have v 1 to v m and it is linearly independent, then if

you look at the the assumption here then this by assumption we can say that this theorem

is true for m. So, it means that this m is less than or equal to n, and for this set we can

always find out we can find out a subset H of G containing exactly n minus m vector

such that this set union that H generate the whole of V.
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so it means that we may apply the induction hypothesis to conclude that m is less than or

equal to n and that there is a subset u 1 to u n and u n minus m of G such that this set

union u 1 to u n minus 1 generates the whole of V.



Now, with this we want to ah prove the result for this set L. So, now, since this span the

whole of V. So, it in particular we can always find out say constant a 1 to a m b 1 to b n

minus 1, such that this vector v m plus 1 can be written as linear combination of v i n u i.

Now here my claim is that there exist at least 1 b i which 1 b j’s, which are nonzero

because if all b j b 1 to b n minus 1 are 0 it means that v m plus 1 can be written as u

linear  combination  in  terms  of  v  i  ah,  which  contradict  the  fact  that  l  is  linearly

independent because l is linearly independent means v m plus 1 cannot be written as as a

linear combination of v 1 to v m. So, at least 1 of this b 1 to b b 1 to b n minus 1 has to

be nonzero, it means that this n minus m has to be positive then only ah some of b j’s are

non zero.

So, here n is strictly greater than m or we can say that n is greater than or equal to m plus

1 this implies that some of the b i’s let us say at least 1 b 1 is non 0 and then we can write

down equation 1 in terms of b 1. So, b 1 u 1 we can write it b 1 u 1 in terms of a i v i and

v m plus 1.
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And we can write it u 1 as minus summation i equal to 1 to m b 1 inverse a i v i plus b 1

inverse v m plus 1 minus j equal to 2 to n minus 1 b 1 inverse b j u j 

So, it means that u 1 can be written as linear combination of v i v m plus 1 and u j’s, and

we can say that let us consider h now in this case h is nothing, but remove this u 1 from



this set u 1 to u n minus 1 now h is what u 2 to u n minus 1. Then u 1 belongs to span of l

union edge l is what l is v 1 to v m plus 1 h is what u 2 to u n minus 1. So, we have

shown that u 1 can be written as the linear combination of v i’s v m plus 1 and uj. So, we

can say that u 1 belongs to a span of l union S and because v 1 to v m u 1 to u n minus m

these are already in span of an union H basically these are element of L union H, so this

will belongs to a span of H.

So, it follows that v 1 to v m u 1 to u n minus m it also belongs to a span of L union H,

since this theorem is true for ah vectors v 1 to v m, then this set generate the whole of v.

So, we are using this fact and we are saying that v 1 to v m u 1 to u n minus 1 generates

v. So, and this is already contain in span of a L union H. So, it means that v containing a

span of L union H. So, we can say that span of L union H is whole of v.

So, since H is subset of G now how many element it contain it contains n minus m minus

1. So, it means it contains n minus m plus 1 vectors and the theorem is true for m plus 1

vectors also, and hence the proof follows.
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Now, this has a very, very say useful corollaries which we are going to discuss, so first ah

corollary is this that.
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Let V be a vector space having the finite basis then every basis for V contains the same

number of vectors let us have a small proof of this. So, what we need to prove here that

we have a.
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Vector space V and we know that it has a finite basis, has a finite basis, finite basis, what

we want to prove here that every basis of this V contain the same number of vectors. So,

suppose we have 2 basis say S and T, since it has a finite basis let us consider this finite



basis as this S. So, let us take the number of element in this basis is n and consider

another basis say T and here the number of element is this m.

So, here since S is a basis it means that S is L I set, and S is a spanning set similarly T is

a basis it means T is L I set and T is a spanning set. So, let us consider this as S is a

spanning set means spanning set first second thing is that S is l a S is a L I set, similarly

we can write down for T. So, that T is a spanning set a spanning set means span of T is

whole of V and second is that T is L I set.

Now, please  recall  the  replacement  theorem  and  replacement  theorem  says  that  the

number of that if we have a vector space V, and a spanning set having ah number less

having number n and this n elements here then if we take any L I set, then number of L I

independent vectors must be less than number of a spanning elements.

So, it means that here by a replacement theorem if we use these 2 result that if we have a

S is a spanning set, means as generate the vector space V and T is a L I set, then the

number of ah vectors in T must be less than or equal to number of the element in this

spanning set. Now the number of element in L I set is m must be less than or equal to

number of the element in this spanning set that is n. So, it means that m has to be less

than or equal to n let us call this as equation number 1.

Now, let us consider again the same situation, but this time we use this set of ah things

that in this case T is a spanning set, and S is a L I set. Now again use the replacement

theorem which says that the number of number of vectors in a L I set, must be less than

or equal to number the number of the element in a spanning set. Now here the number of

element in L I set is what here the number of element in L I set is n this must be less than

or equal to number of the element in a spanning set that is less than equal to.

So, n is less than or equal to m call it 2 now if we look at the both the equation number 1

and 2 this can be possible only when m is equal to n. So, it means that that if V has a

finite basis then the number of element in any of the basis must be same, and this shows

that that the number of basis element it means that number of basis may not be unique,

but the number in each basis has to be unique and this number unique number assigned

to this vector space V as a dimension of this vector space V.



So, let us with the help of this let us define the dimension of a vector space V. So, a

vector space is called finite dimension if it  has a basis consisting of finite number of

vectors. And as we pointed out in this corollary 4 the unique number of vectors in each

basis is called the dimension of V, and it is denoted by dimension of V.

Now if  we do not  have finite  dimensional  vector  space  then we call  this  as infinite

dimension vector space, examples we have shown seen is R n and here we have seen a

basis we have seen as e i 1 less than i less than or equal to n. So, here we can say that the

dimension of R n is nothing, but n. So, dimension of R n is nothing, but n similarly

dimension of P and F if we have seen that P n F is what P n F is the set of all polynomials

whose degree less than or equal to n.

And we have seen that the basis element and basis are what 1 x up to x m. So, here

number of element is n plus 1. So, we can say that dimension of P n F is nothing, but n

plus 1 is it they are certain more example here ah the trivial example is that.
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The vector space 0 has dimension 0, so here ah we have defined as the. So, here ah basis

set is nothing, but empty set and empty set has no element. So, we can say that vector

space  0 has  dimension 0 the  next  example  which  we just  now shown that  R n has

dimension n. Similarly, the vector space P n R has dimension n plus 1 now P n R means

that set of all polynomials whose of degree less than or equal to n, whose coefficients are

coming from real number is it ok, so here dimension is n plus 1.
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Next let us consider the example 4, which says that consider the vector space complex

number and underlying field is real numbers. So, if underlying field is real number then

we have basis vectors 1 and i. So, it means that you take any element in say ah C over R.

So, C over R means you take any element here. So, let us call this as u here, so you can

write and write down a plus i b, now since a and b are coming from where a and B are

coming from R right.

So, here basis elements are 1 and i, so we can say that ah this is l i and this can this spend

the whole of vector space C. So, we can say this is a basis element. So, here we can say

that dimension of C over R is nothing, but 2, but if we consider the vector space C over

C. So, it means that now the possibility for a and b that this a and b is coming from c,

then here basis element contain only 1 element that is any nonzero element let us take

this as 1. So, here we have only singleton set which is spanned the whole of C, and since,

since it is a nonzero, so it will be a linearly independent set.

So, here C over C has dimension 1 while C over R has dimension 2. So, ah we can

consider  this  subspace  of  R  3,  and  we  can  say  that  0  dimensional  subspace  is  0  1

dimensional subspace we can consider all lines through the origin 2 dimensions away

spaces all placed through the origin and 3 dimensional subspace is nothing, but R 3 will

discuss more about this remark in next lecture. So, here we skip we are skipping it and in



next lecture we will discuss more about it, and next important ah result is corollary 5

which says that.
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Let V be a vector space with dimension n then any finite generating set for V, which

contains at least n vectors and a generating set for V that contain exactly n vectors is a

basis. So, it means that if we already know the dimension here then if we can find out a

generating set having exactly n vectors that is nothing, but a basis second thing be that

any linearly independent subset of V that contains exactly n vectors is a basis for V, and

third is that every linearly independent subset of V can be extended to a basis for V.

Now, we can consider as an example of this corollary 5 is this, then since it is L I set

having n plus 1 element which is nothing, but the dimension of P n F. So, by second

point of corollary 5 we can show that this set is a basis of P n F next lecture we will

discuss the concept known as a coordinate of a given vector. So, how this concept of

basis will help you to find out the coordinate of a given vector V is it ok. So, we will

discuss in next lecture thank you for listening us we will meet in next class.

Thank you.


