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Linear Dependence and Independence

Hello friends. Welcome to the lecture. In today’s lecture, we will discuss the concept

very  very  important  concept  of  linear  algebra,  namely  linear  dependence  and

independence.  So,  first  let  us  define  what  is  the  linearly  dependence  and  linearly

independence just look at the definition here.
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So, definition says that a subset S of a vector space v over a field F is called linearly

dependent, if there exist a finite number of distinct vectors U 1 to U n which are element

of S and scalars a i from i e from 1 to n not all 0 such that their linear combination is

equal to 0 and these scalars are coming from this field.

So, idea is that, that if we form this system of linear equation and if this system of linear

equation gives a nonzero non trivial solution in terms of ai S then we say that S is a

linearly dependent set, and we call that vectors of S are linearly dependent vectors. A

subset S of a vector space that is not linearly dependent is called linearly independent

and vectors of S are said to be linearly independent vectors. So, this is the definition of



linearly dependent set and linearly independent set. Now if we have infinite set. So, it

means and then we can define linearly dependent independent ness.

So, let us define it,  that if the set a has infinitely many vectors then S is said to be

linearly independent if for every finite subset T of S, T is linearly independent otherwise

we call S as linearly dependent set. So, let us discuss certain examples and fact about

linearly dependent independent sets. 
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So, the following facts about sets are true in any vector space. First thing that any subset

of a vector space that contains the 0 vector is linearly dependent. So, let us just look at

here.

So, as for the definition says that a set S which is a subset of a vector space v which is

defined over a field F. 
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We say that S is linearly dependent, if we can find out say vectors u 1 to say u n finite

number of vectors u 1 to u n and correspondingly a i is from 1 to n scalars from this field

f, such that if we form this linear combination a i u i equal to 0 from i equal to say 1 to n

and if this equation has nontrivial solution, then we say that S is linearly dependent in

short we call this as S is a LD set. And if we do not have any nontrivial solution or means

that if this linear combination is equal to 0, gives you only a trivial solution only a trivial

solution means that all a is has to be 0 for all i then this case we say that S is a LI set ok.

Now, based on this definition we want to prove the first thing that any set say S 1 which

contains say 0 element. So, it means that if we have a set S 1 which contains 0 then this

set S 1 is linearly dependent why? Because if you look at we can write a 0 as 1 dot 0. So,

it means that we are forming a linear combination like 0 and 1 is a scalar coming from

this field, then I can write a 0 as 1 dot 0. So, it means that here your a 1 is equal to 1

which is not equal to 0.

So, here we have a nontrivial solution for this equation. So, we say that S 1 is linearly

dependent. So, or you can say that this has another meaning that if we look at this here

that  here  0  can  be  represented  as  linear  combination  of  u  i.  So,  0  has  a  several

representation say. So, I can write a 0 as 0 dot u 1 0 u 2 and so on. So, this is known as

trivial  representation.  So,  this  is  a  trivial  representation.  So,  if  0  has  only  a  trivial



representation, we call that S is a LI set, and if 0 has a nontrivial representation like this

it means that sum of a is are nonzero then we call that as is a LD set is it ok.

Now, let us move to second remark, it says that the empty set is linearly independent

because when we try to define a linearly dependent set, we always requires a nonempty

set to define a linearly dependent as so, but empty set does not contain any element. So,

we can say that trivially that empty set is linearly independent. Now let us move to next

remark it says that a set consisting of a single nonzero vector is linearly independent.

So, it means that if we have a singleton set for example, take this singleton u and here u

is non 0 vector then if we take a u equal to 0 for some nonzero scalar a it means that we

are  assuming that  that  this  singleton  u is  linearly  dependent  then since it  is  an  a  is

nonzero, then we can multiply by a inverse and we can have u as a inverse applying on a

of u now here a of u is nothing, but 0. So, a inverse applying on 0 which gives you 0. So,

this implies that u has to be 0. So, it means that if a singleton set is linearly dependent,

then that element has to be a 0 element. So, it means that if a set having only 1 vector

which is nonzero, we can say that singleton set is linearly independent set. 

Now, let us consider the fourth point; a set is linearly independent if and only if the

representation of 0 as linear combination of its vectors are trivial representation, that we

have just pointed out that a 0 can be written as summation a i u i equal summation ai ui,

where all the ai’s are nothing, but 0. Then if we have this kind of representation which is

known as trivial representation, we say that set is linearly independent otherwise set is

linearly dependent.

Now, let us come to first example let us consider this the set S which is consisting.
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.



Say 4 element 4 vector, 1 0 0 minus 1 0 1 0 minus 1 0 0 1 minus 1 0 0 0 1 is linearly

independent R4. Let us see whether this set is linearly independent or not. So, here we

want to check whether this set S which is subset of R 4.

(Refer Slide Time: 08:13)

And here R 4 is  a vector space and we want to check whether this  set  S is  linearly

independent or dependent.

So, let us take the element here and form a linear combination. So, here if you call this as

u 1, u 2, u 3 and u 4 and from this combination a 1, u 1 plus a 2, u 2 plus a 3, u 3 plus a 4,



u 4 is equal to 0 and then try to find out what is the solution in terms of a is. So, let us

and here all these a is are nothing, but from R i equal to 1 to 4.

So, here let us say a 1 and u 1 is 1 0 0 minus 1 plus a 2 0, 1, 0 minus 1 plus a 3 0, 0, 1

minus 1 plus a 4 0, 0, 0, 1 equal to 0.

So, here this 0 is nothing, but 0 vector or you can write it like this. So, if we equate. So,

you can write this as say a 1, and then here we have a 2, and here we have sorry here we

have then we have a 3 yeah then we have minus a 1, minus a 2, minus a 3, plus a 4 is

equal to 0 0 0 0 and if we equate both the things because this is a vector, this is vector

and then it will be equal if it is equal in component wise.

So, we can say that a 1 equal to 0, a 2 equal to 0, a 3 equal to 0, and when you put last 1

is minus a 1, minus a 2, minus a 3, plus a 4 equal to 0 when you simplify you will get a 4

equal to 0. So, here if we form if we take this linear combination which is equal to 0,

then we can say that we have only a trivial solution that is all a is are nothing, but 0. So,

we can say that this S is a LI set nearly independent set and the vectors u is are linearly

independent vectors here.

Now, let us move to second example. So, in the second example we have another set of

R4.
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So, we need to check whether this is a LI set or LD set. So, here example is that we have

to show that this set is linearly dependent, and then we try to express one of the vectors

in S as a linear combination of others vectors in S in R4. 

(Refer Slide Time: 11:13)

So, as the example 2 says that we have to show that the set S which consists of these 4

vectors say U 1 which is 1 3 minus 4 2 u 2 S 2 2 minus 4 0 and u 3 S 1 minus 3 2 minus

4 and u 4 as minus 1 0 1 0.

So, this set we want to show that it is linearly dependent and not only we want to show

that it is linearly dependent, but we can show that in this case that one of the vectors can

be written as linear combination of other vectors. So, first let us start to show that this is

a linearly dependent set. So, let us form a linear combination of these vectors u 1 to u 4.

So, let us say that a 1 a i u y summation i is from 1 to 4 is equal to 0. So, this is nothing,

but a 1 let us say 1, 3 minus 4, 2 plus a 2 2 2 minus 4 0, plus a 3 and it is 1 minus 3 2

minus 4 plus a 4 and here we have minus 1 0 1 0 equal to 0 vector.

So,  if  we write  it  here then  we can say that  we can write  down a system of  linear

equation in terms of a i s. So, we can say that a 1, plus 2 a 2, plus a 3, minus a 4 is equal

to 0. And here we have 3 a 1, plus 2 a 2, minus 3 a 3, equal to 0; then minus 4 a 1, minus

4 a 2, plus 2 a 3, plus a 4 is equal to 0 and this we are looking at the third component. So,

third equation is nothing, but we are looking at only the third component.



So, here last equation is what; 2 a 1 plus 0 times a 2 minus 4 times a 3 plus 0 times 0

times a 4 equal to 0. So, here this system of this linear equation is equal to 0 gives rise to

the system of linear equation in terms of a i and if and we want to find out the solutions

here. We have these 4 equation a 1 plus 2 a 2 plus a 3 minus a 4 equal to 0, 3 a 1 plus 2 a

2 minus 3 a 3 equal to 0, minus 4 a 1 minus 4 a 2 plus 2 a 3 plus a 4 equal to 0 and 2 a 1

minus 4 a 3 equal to 0. And as we pointed out that if we add these 2 equation then we are

nothing getting nothing, but the minus of this equation.

So, it means that this system of linear equation has more than one solution or you can say

that infinite (Refer Time: 14:09) many solution and one such possible solution is given

by this that a 1 equal to 4, a 2 equal to minus 3, a 3 equal to 2, and a 4 equal to 0 and if

you look at here we have say nonzero solutions for these a is. So, we can say that S is

linearly dependent. So, this can be obtained if you look at here then this can be obtained

by here. So, you can say that a 1 is nothing, but 2 of a 3.

So, you can get a 1 as 2 of a 3, then just look at here the second equation then second

equation is what you simply write down the value of a 1 then it is what? 6 of 3. So, from

this equation you can write 6 of a 3 plus 2 of a 2 minus 3 of a 3 is equal to 0. So, here we

can write it that 2 of a 2 is equal to minus 3 of a 3. So, here we can write it minus 3 of a 3

how we are getting? 6 minus 3 three and then you if you go take it at other side we have

2 of a 2 as minus 3 of a 3. So, we can write down that a 2 is nothing, but minus 3 by 2 a 3

and a 3 is basically free you can take this as k.

Now, how to find out this 4 a 4? So, if you put all the values of a is here then a 1 is

basically 2 of a 3, and 2 of a 2 is nothing, but minus 3 of a 3 plus a of 3 minus a 4 equal

to 0. And if you simplify this 2 of a 3 plus 1 of a 3 and it is 3 of a 3 and this gives you

that a 4 equal to 0. So, here we have a 4 or equal to 0. So, here we can give any value to

this k and we have infinite many solutions to this. So, once a solution is that you take k

as to. So, let us the, this as 2. So, a 3 is equal to 2, then your a 2 is nothing, but minus 3

and a 1 is nothing, but that is 4 here. So, here a 4 minus 3 and 2 and 0 is one such

solution that we have pointed out in our slide.

Now, in this case you can write down one of the vector in terms of others. So, let us take

this solution that a 1 is equal to 4 let me write it here as a 1 equal to 4.
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And a 2 is what? A 2 we have pointed out that is it is equal to minus of 3. So, here it is

minus of a 3, a 3 is simply k. So, a 3 is nothing, but 2 here. So, an a 4 is coming out to be

0.So, here we have 0 equal to this. So, it means that we can write down this as 1 3 minus

4 2 4 you just take it the other side and this can be written as 3 times 2 2 minus 4 0,

minus 2 times 1 minus 3 2 minus 4 and if you divide it by 4 then you will get this

relation. So, minus 2 by 4 can be simplified by as minus 1 upon 2. So, here what we have

shown here we have shown that S is a linearly dependent set and one of the vector say a

1 3 minus 4 comma 2, this can be written as linear combination of element of say it is u 2

and u 3. So, it means that U 1 can be written as linear combination of u 2 and u 3.

Similarly, if you rearrange this, this time I have taken this to other side if you take this

element go other side then you can write down u 2 in terms of U 1 and u 3 similarly you

can write down u 3 in terms of U 1 and u 2 u three. So, in case of linearly dependent set

you can always write one of the element as in a combination of other element of this set

statement of this theorem.
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One is that let P contains these an element n vectors we want to v n be a set of n vectors

in R n then we can check the linearly independent as of this set by forming a n cross n

matrix a by saying that a equal to v 1 to v n, here v 1 is an element of Rn. So, v 1 is first

first column, v 2 is second column, and v n as n th column then we can say that this set p

is linearly independent in R n if and only if this matrix a is nothing, but a non singular

matrix.

So, how we can prove it. So, let us move here by definition P is linearly independent if

and only if the equation, this linear combination summation a i vi equal to 0. So, here we

have a 1 v 1 plus a 2 v 2 plus a and v n equal to 0, when all these coefficients are coming

from real numbers. Then we say that p is linearly independent if this equation has only a

trivial solution.

Now, this equation can be written in terms of system of linear equation a x equal to 0. 
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So here a x equal to 0. So, I am writing this equation as.

(Refer Slide Time: 19:38)

Matrix equation a x equal to 0 where a is nothing, but v 1 to v n where v 1 is first

column, v 2 a second column Vn as n th column and x is unknown which is nothing, but

a 1 to a n. So, we can say that this equation has a trivial solution provided a x equal to 0

has a trivial solution now a x equal to 0 has trivial solution only, if and only if the matrix

is nonsingular. So, which complete the proof. So, it means that in R n if we have n a set

of  n  vectors,  then by forming this  matrix  we can check easily  check that  this  set  is



linearly independent or not. So, only the end thing we need to check is the similarity or

non similarity of the matrix a.

Now, let us move to next theorem; theorem 2 which says that let v be a vector space and

let S 1 is a subset of S 2 is a subset of V, then if S 1 is linearly dependent then. So, does S

two. So, theorem says that we have a.

(Refer Slide Time: 20:56)

So here a x equal to 0.S 1 a subset of S 2 is a subset of vector space v and we say that if

S 1 is a L D set. So, if S 1 is L D set then its superset S 2 is also L D, this is what we

want to prove. So, this is given. So, given that S 1 is a L D set want to prove that want to

prove that S 2 is also LD. So, how we can prove here. So, let us since S 1 is given as

linearly dependent set. So, it means that by definition of linearly dependent ness we can

always find out a finite number of vectors in S 1 say you want to say u n and constant

coming from the field say let us say that a 1 to a n such that this linear combination a i u i

equal to 0 has nontrivial solution.

So, that is by definition of linearly dependent set nontrivial solutions. Now if you look at

since all these u is are coming from S 1 for all i, i is from 1 to n now S 1 is subset of S 2.

So, you can say that u i is all u i is all element of S 2 here. So, taking u i as element of S

2  and  a  is  coming  from  the  scalar  field  we  can  say  that  this  linear  combination

summation a i u i equal to 0 has nontrivial solutions. So, this implies that S 2 is linearly

dependent. Because by definition S 2 is linearly dependent means we if we can find out a



finite number of vectors finite number of vectors from S 2 and constant a 1 to some

constant  a  1  a  is  from  scalar  field  such  that  this  summation  this  linear  equation

summation a i u i equal to 0 has nontrivial solution. So, this implies that S 2 is L D which

we want to prove.

So, that is the small informal proof of this theorem 2 corollary of this theorem which

says that let v be a vector space and let S 1 is a subset of S 2 is a subset of v if S 2 is

linearly independent then S 1 is also linearly independent. So, this I can say that here S 2

is what S 2 is a set and if S 2 is linearly independent then subset of linearly independent

set is also linearly independent. So, if you look at the theorem, theorem says that superset

of a linearly dependent set is linearly dependent and this corollary says that subset of a

linearly independent set is linearly independent. So, this can be easily proved with the

help of this theorem.

So, let us suppose that this S 1 is not linearly independent.  So, it means that S 1 is

linearly dependent. So, by previous theorem if S 1 is linearly independent dependent then

its superset is also linearly dependent, but it is given that S 2 is linearly independent. So,

this implies that S 1 can S 1 cannot be linearly dependent set. So, S 1 has to be linearly

independent is it ok.

So,  this  corollary  can  be  easily  proved  with  the  help  of  this  theorem.  So,  we  can

summarize these theorem and this corollary is that, if we have a linearly dependent set

then all its super sets must be linearly dependent and this corollary can be seen that if we

have a linearly independent set then all its subsets must be linearly independent is it ok.

So, now let us move to very important theorem 4. 



(Refer Slide Time: 24:50)

Which says that let S be a linearly independent subset of a vector space V and let v be a

vector space v be a vector in vector space v that is not in S, then S union; this singleton

element v is linearly dependent if and only if v belongs to span of S. Now what is the

importance of this theorem? If you look at the previous corollary, corollary says that the

subset of linearly independent set; set is linearly independent, but we do not know how

that what is what about the superset of linearly independent set. So, this theorem gives a

small hint here, that if we have a linearly independent set like this say S is a linearly

independent set, and if we join if we add a new vector say v which is not in S, then this

will be linearly independent if and only if v is not in a span of S. So, this theorem will

help  us  to  construct  new linearly  independent  set,  as  a  superset  of  a  given  linearly

independent set.

So, let us say that since S union v is linearly dependent, then by definition we can always

find out some vectors say u 1 to u n and S union v such that a 1 u 1 plus a 2 u 2 plus a n,

u n equal to 0 for some nonzero scalars a 1 to a n. So, now. So, this is by definition right

now we already know that S is linearly independent. So, it means not that these u i must

contain at least 1 element this v, because if u i and none of u i is v, then this simply says

that S is linearly dependent, but S is linearly independent. So, it means that 1 of the u is

say U 1 equal to this v. So, it means that we have a 1 v plus a 2 u 2 plus a n u n equal to

0.



Now, here so, this follows from the linearly independent ness of this S. Now here my

claim is that this a 1 is also non zero why? Because if this a 1 is 0 then this is nothing,

but a 2 u 2 plus a n u n equal to 0, and which has a nontrivial solutions. So, this implies

that S is linearly dependent, but that is not that will contradict the fact that S is linearly

independent. So, it means that a 1 has to be nonzero.

So, if a 1 is non zero then we can multiply by the inverse of a 1, and we can write down

this v as a 1 inverse of minus of a 2 u 2 minus of a 3 u 3 and minus of a n u n. And if you

simplify this can be written as minus of a 1 inverse a 2 u 2 minus and minus a a 1 inverse

a  n  u  n.  So,  this  can  be  say  that  this  can  be  written  as  that  v  is  written  as  linear

combination of u 2 u 3 up to u n. So, it means that v is a linear combination of u 2 to u n

and all these elements are coming from where these elements are coming from this S.

So, we can say that v is belonging to span of S that is what we wanted to prove. So, it

means that we have started with that S union v is linearly dependent, and what we have

proved here that we belongs to span of S. Now we try to prove the other part the other

part is that if we take v belongs to span of S then we try to show that S union v is linearly

dependent. So, let us move here.
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So, let v belongs to a span of S. So, if v belongs to span of S means v can be written as

linear combination of elements of S. So, let us take elements v 1 to v m in S and scalars

corresponding scalar b 1 to b m says that v can be written as b 1 v 1 plus b 2 v 2 plus b m



v m. Now when you write it here this can be taken in the right hand side and we can

write that 0 can be written as b 1 v 1 plus b 2 v 2 plus b m v m plus minus 1 to minus 1

into v.

Now, it may happen it looks like the this 0 has a nontrivial representation, but this 0 has

nontrivial representation if we none of this v i is equal to v, because if some of say v i is

equal to v then this will be canceled out by the corresponding v is, and we can say that 0

has only trivial representation, but this cannot happen because v is not in S.

So, v is not in S means v cannot be equal to any of these v is. So, v is not equal to v i for

i is 1 to m. So, it means that the coefficient of v in this linear combination has to be

nonzero. So, it means that this minus 1 cannot be cancelled by any of these v is. So, it

means that this 0 has a non triple representation in terms of v 1 to v m and v. So, it means

that S union v is linearly dependent. So, what we have proved here that, if we start with

say linearly independent set say S, then we can add a new vector into this set only when

this set v is not in a span of S. So, it means that if v belongs to span of S, then this union

will make this set as a linearly dependent set.
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So, let S be an any subspace of V and let B is a set v 1 to v n be any set of S, and we say

that b is called a basis for this subspace S if it satisfies the following 2 condition. The

first condition is that this set B has to be linearly independent set, second that the span of

this set B is whole of S and if we have these 2 property holds then this set B is known as



basis for this subspace S. So, let us take a very important example 3, which says that

since span of phi is equal to singleton set 0, and we already know that phi is linearly

independent then we can say that this singleton empty set phi is a basis for vector space

0.

Now, moving on next example and next example we are considering this set R n and it is

quite popular, R n and here we try to find out a basis for this R n. So, we say that e 1

which is the vector here 1 0 0 0 0, e 2 as only the second place is 1 rest are all 0 e (Refer

Time: 31:50) is n th place is 1 rest are all 0, then this set e 1 to e n is a basis for R n. So,

we need to prove that this set e is are linearly independent and every factor of R n can be

written as linear combination of these e is; these are this is this is quite a trivial example,

but quite important example.

So, here we have R n and here we have e i, e i is basically what 0 0 0 1 all zeroes and

here. So, this is only i th place. So, i th place is 1 rest all 0.So, we want to show that these

the set S which is nothing, but e i, i is from 1 to n is a basis here. So, S is a basis for r n

and this has a name very special name which is known as standard basis of r n. So, to

show that it is linearly independent set. So, we form this a i e i equal to 0, i is from 1 to n

and if you write down. So, here we have what a 1 1 0 0 0 plus a 2 0 comma 1 0 0 and so

on. If you look at if you simplify equal to 0 if you simplify this it is nothing, but a 1 a 2

and a n is equal to 0 comma 0 comma 0.So, this implies nothing, but a is are all 0 for

each i 1 to say n. 

So, lines is quite easy here, now to show that this span the whole of R n you take any

element in R n. So, let us take any element in R n say let us say alpha 1 to say alpha n it

is an element of Rn here, now here we may write it as transpose of this, but since we are

using this as a row vector. So, I am assuming alpha 1 to alpha n also as a row vector here

otherwise we have to apply everywhere the transfers here.

So, we can say that this factor which is an element of R n here this can be written as

alpha 1 to alpha n can be written as summation alpha i e i i is from 1 to n this can you

can easily check. So, it  means that this every vector in R n can be written as linear

combination in terms of e is, and all these e is are linearly independent. So, we can say

that they set e 1 to e n forms a basis of R n and it is known as standard basis of R n. 
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So, moving on next example, here we consider say subset of a polynomials. So, P n F

represent the polynomials of order say n of order n, and we try to claim this set is 1 x x

square x n is a basis and it  is also known as stand basis for P n F means set  of all

polynomials of degree n. So, to show that it is a basis we need to prove 2 things first is

that these are LI and second thing is that every polynomial of degree at most n can be

written as linear combination of this.

So, that this part that it is that this span be a polynomial any polynomial of degree n is

quite easy. 
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So, here we want to show that this 1 x x n, this forms a basis for P n F what is P n F? It is

a set of all polynomials which can be written as say a set of all polynomials say of p n x

which can be written as say a naught plus a 1 x plus so on a n x n all these a is are

coming from this field f. So, so first of all take any element of P n F. So, it will be of this

kind say a naught plus a 1 x plus so on a n, x n and you can easily see that this can be

written as linear combination of element of this set call this as say S.

So, this can be written as a naught into 1 plus a 1 into x and a n and into x power n. So,

proving that the span of S is P n F is quite easy, but to prove that this set S is basically a

linearly independent set is quite nontrivial. So, let us start with this one. This one is a non

0 vector. So, this is a this singleton 1 is basically linearly independent set. Now let us

consider  the  next  element  that  is  x,  now  x  can  be  cannot  be  written  as  a  linear

combination of this one. So, it means that here x is not in a span of this 1.

So, it means that this 1 union x is LI, this follows from the previous theorem which says

that if we start with a LI, set that if S is a LI set and take any element v which is not in S

then S union v is LD, if and only if v belongs to a span of S. Now here if we look at this

S is nothing, but singleton [FL] singleton 1 and this x is not in a span of 1 then 1 union x

has to be li. So, it means that this 1 x is a LI set and we can keep on doing and we can

say that this set S is also a LI set. So, here by repeated application of this result, we can

show that this set S is a LI set.



So, we here we have shown that this is LI set and this is span the whole of P n F. So, we

can say that it is a basis for set of all polynomials of degree at most end, and we call this

set S as a standard basis for P n F. And next example m cross n it is a set of all m cross n

matrix whose entries are coming from this field f then here we try to construct the basis

for this. So, here basis is given in terms of E i j what is E i j? E i j denote the matrix

whose only nonzero entries is 1 in the i th row and j th column, then this if we define our

matrix like this the E i j then they set e i j form a basis for the set this vector space M of

matrix of order m cross n. 
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So, let us consider here. So, here if we take any element here element is that we have a

matrix of m cross n order, and whose entries are coming from this field f we can write

this as say a 1 1 a 1 2 up to a 1 n and so on a m 1, a m 2 and so on a m n and here a i j is

coming from this field F. So, this is the vector space m of matrix of order m cross n and

we try to find out say basis of this and claim that if we take E i j.

So, what is E i j? E i j is the matrix whose the i th row and j th column. So, here we have

i th row and j th column and here if we have only one entry here rest all 0.So, only one a

nonzero entry one here is at this place rest are all 0, and we say that this e i j forms a

basis for this vector space M. So, here to prove that this is a linearly independent you

simply form this summation a i j E i j equal to 0.



Now, here 0 is a 0 matrix and we can show that here i this is double summation here i is

from 1 to say m and j is from 1 to n. And if we form this then we can prove that by

equality of matrix you can show that a i j is nothing, but 0. So, is that. So, this is not a

very difficult thing to show. So, you just show that by writing all e i j here and forming

this kind of linear combination you can show that all a i js are 0 for all i and j, then to

form to show that this form a span spanning set, you can simply say that you can write

down this A as nothing, but a i j, E of i j, i is from 1 to say m and j is from 1 to n. So, you

can write down your matrix A in as a linear combination of these a i j like this.

So, we can say that by this you can say that any element a of this vector space can be

written as linear combination of these E i j, and this by this exercise you can show that

all these E i j is nothing, but linearly independent vectors. So, we can say that the basis

for this vector space is nothing, but E i j, i is from 1 to m and j is from 1 to n.

So, here I am I will stop here, in next class in next lecture we will discuss more about the

properties of basis and with the help of basis we try to define what is the dimension of a

vector space and with the help of this notion we also try to define the coordinates of a

given vectors. So, here I am stopping and thank you for listening us.

Thank you. 


