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Hello friends, welcome to my lecture on Rate of Convergence of Power Method. In our

previous  lecture  we  studied  how  to  determine  the  dominant  eigenvalue  of  a  real

diagonalizable square matrix of order n, by using the power method algorithm.

Now, we are going to determine the rate of convergence of the power method algorithm.

So, we shall study a theorem on the rate of convergence of the power method algorithm,

which we know is used to determine the dominant eigenvalue of A real diagonalizable

square matrix A, A of order n. If we assume that the eigenvalues of Ar orders in such a

way that let us say if the eigenvalues of A A r lambda 1 lambda 2 lambda n, then mod of

lambda 1 is greater than mod of lambda 2, greater than or equal to mod of lambda 3 and

so on greater than or equal to mod of lambda n. So, lambda 1 is the dominant eigenvalue

of A.

So, let us see how what will be period of convergence of the power method algorithm if a

real diagonalizable a square matrix of order n that the eigenvalues lambda 1 lambda 2

and so on lambda n where lambda lambda 1 is the dominant eigenvalue.
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The theorem says that the rate of convergence of the power method, algorithm is given

by mod of lambda 2 over lambda 1 where lambda 2 is the sub dominant eigenvalue of A

and lambda 1 is the dominant eigenvalue of A sub dominant eigenvalue means it is the

next dominant eigenvalue of A. Lambda 1 is the dominant eigenvalue, and lambda 2 is

the next dominant eigenvalue are sub dominant eigenvalue of A.

 Now in the proof of the power method algorithm if  you recall,  we proved that  the

vectors y k are given by A k y naught over maximum of A k y naught for k equal to 1 to 3

and so on by using the induction process on mathematical induction on k. Now if the

initial approximation y naught here is chosen in such a way that y naught is equal to

alpha 1 x 1 plus alpha 2 x 2 and so on, alpha x n where be assumed that alpha 1 is not

equal to 0.
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Then A k y naught you can apply A k operator on this equation you get A k y naught

equal to alpha 1 A k x 1 plus alpha 2 A k x 2 and so on alpha n A k x n.

Now if lambda 1 is the eigenvalue of A, and x 1 is the corresponding eigenvector, then

we know that lambda 1 to the power k is an eigenvalue of a to the power k and x 1 is the

corresponding eigenvector. So, here A k x 1 is lambda 1 to the power k into x 1 and A k x

2 is lambda to the 2 to the power k into x 2, and A k x n is lambda n to the power k into x

n. And there so, what we do is we write A k y naught equal to lambda 1 to the power k

times alpha 1 x 1 plus alpha 2 times lambda 2 over lambda 1 to the power k and so on.



Obviously, lambda 1 is not equal to 0, because mod of lambda 1 is greater than mod of

lambda 2 and mod of lambda greater than or equal to mod lambda 3 and so on.

So, lambda 1 in non-0 and therefore, we can write A k y naught in this manner. And so,

maximum of  A k  y  naught,  maximum of  a  k  minus  lambda  1  to  the  power  k  into

maximum  of  this  expression  in  the  inside  the  brackets,  because  we  have  seen  that

maximum of c into x, maximum of c into x is equal to c times maximum of x.
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Where x is the vector belonging to R to the power n, and c is a scalar.

So, maximum so, lambda 1 to the power k is a scalar. So, maximum of a k y naught is

equal to lambda 1 to the power k into maximum of this expression inside the bracket

now lambda 1 is the dominant eigenvalue. So, modulus of lambda j over lambda 1 will

be less than 1 for j equal to 2 3 4 and so on up to n.
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And because of this for large value of k mod of lambda j divided by lambda 1 is less than

1 for all j is equal to 2 3 and so on up to n.

So, what will happen as lambda so, this implies that mod of lambda j over lambda 1 to

the power k is goes to 0 as k goes to infinity. And therefore, for large value of n for large

value of k, we can say that maximum of A k y naught, maximum of A k y naught is equal

to lambda 1 to the power k into maximum of alpha 1 x 1 because the remaining terms

will be very, very small. So, approximately we can say that maximum of the expression

inside the brackets is equal to maximum of alpha 1 x 1. So, we have a maximum of A k y

naught equal to lambda 1 times lambda 1 to the power k into maximum of alpha 1 x 1

approximately. And let us denote maximum of alpha 1 x 1 by mu 1. So, we get lambda 1

to the power k into mu. Now here, so mu is here maximum of alpha 1 x 1.

Now, let us note that mu is not equal to 0, why because mu is equal to mu is equal to

alpha 1 x 1. So, if mu is equal to 0, if mu is equal to 0, then maximum of alpha 1 x 1 is

equal to 0 means that alpha 1 x 1 equal to 0. Now we have assumed while writing the

equation y naught equal to alpha 1 x 1 plus alpha 2 x 2 and so on, alpha n x n we have

assumed that y naught is expressed in such a way that in terms of x 1 x 2 x n in terms of

x 1 x 2 x n it is expressed in such a way that alpha 1 is not equal to 0. So, since alpha 1 is

not 0 we have x equal to 0. But x x 1 equal to 0, but x 1 is an eigenvector of the matrix A

corresponding to the eigenvalue lambda 1, so, x 1 cannot be 0 ok. But x 1 cannot be 0, as



it is the eigenvector of A is the eigenvector corresponding to the eigenvalue lambda 1,

corresponding to the eigenvalue lambda 1. So, so, x 1 cannot be 0 and therefore, there is

a contradiction. So, o, mu is not equal to 0.

Now, so, let us define new constants beta j beta j equal to alpha j over mu for j equal to 1,

2, 3 and so on up to n. Then, y k we can write as then since y k is equal to A k y naught

over maximum of A k y naught ok, what do we get y k is approximately alpha 1 x 1 plus

alpha 2 x 2 lambda 2 lambda by one to the power k x 2 and so on, alpha n lambda n by

lambda 1 to the power k x n.
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See the numerator here we have written for A k y naught, A k y naught is what A k y

naught is this one, lambda 1 to the power k into this bracketed expression. So, that we

have written for A k y naught in the numerator here ok, and maximum of A k y naught

maximum of A k y naught is approximately lambda 1 to the power k over mu. So, we

have used this approximate value in the denominator. So, we get and lambda 1 to the

power k then we canceled so, we get y k approximately equal to this, ok. Now we have

alpha 1 by mu into x 1 plus alpha 2 by mu into lambda 2 by lambda 1 to the power k into

x 2, and so on alpha n by mu into lambda n by lambda 1 to the power k into x n.

 Now by our notation, we have said that we have denoted alpha g over mu by beta j for j

equal to 1 2 3 and so on up to n. So, we write alpha 1 over mu as beta 1. So, we get beta

1 x 1 then alpha 2 over mu at beta 2. So, we get beta 2 lambda 2 by lambda 1 to the



power k into x 2 and so on, alpha n by mu is beta n should be get beta n lambda n by

lambda 1 to the power k into x n. So, this is approximate value of the vector y k, ok.
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Thus far large values of k, because for large values of p only maximum of A k y naught

was approximately equal to lambda 1 with the power came to mu. So far large values of

k what do we get norm of y k minus beta 1 x 1. So, let us see this is y k y k equal to beta

1 x 1 into this beta 1 x 1 plus beta 2 upon into lambda 2 upon lambda 1 to the power k

into x 2 and so on. So, let us bring beta 1 x 1 to the left side and take the norm. So, norm

of y k minus beta 1 x 1 is less than or equal to norm of the norm of beta 2 into lambda 2

by lambda 1 to the power k 2 x 2 and so on, norm of beta and into lambda n by lambda 1

to the power k into x n.

Now, using the properties of norm, what we have? Mod of beta 2 into mod of lambda 2

by lambda 1 to the power k into norm of x 2 and so on mod of beta n into mod of lambda

n by lambda 1 to the power k into norm of x n. Because you know that when we take the

properties of norm is that c times x is equal to norm of cx is equal to mod of c into norm

of x. Wherein x is in where c is a scalar and x is an element of the norm linear space, ok.

So, here now again lambda 2 is the sub dominant eigenvalue of A therefore, mod of

lambda j over lambda 1, is less than or equal to mod of lambda 2 over lambda 1. You can

see you see we have assumed that this is what we have assumed ok. So, so, dominant

eigenvalue is one sub dominant eigenvalue is mod of lambda 2. So, mod of lambda 2



over lambda 1 mod of lambda j over lambda 1, is less than or equal to mod of lambda 2

over lambda 1. Or you can say that mod of lambda 2 is greater than or equal to mod of

lambda j for j equal to 3 4 and so on up to n ok. So, it is clear? From here it is clear?

So, mod of lambda j one divided by lambda 1 less than or equal to mod of lambda 2 over

lambda 1 and therefore, what we can do in this equation I can write mod of norm of y k

minus beta 1 x 1 less than or equal to modulus of lambda 2 over lambda 1 to the power k,

inside we shall  have mod of beta 2 into norm of x 2, because in every term mod of

lambda j over lambda 1 to the power k will be less than or equal to mod of lambda 2 by

lambda 1 to the power k. So, we can write mod of beta 2 norm of x 2 and so on mod of

beta n into norm of x n.
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Now let us define this mod of beta 2 into norm of x 2 and so on mod of beta n into norm

of x n by a constant say c, then we obtain norm of y k minus beta 1 x 1 less than or equal

to some constant c times modulus of lambda 2 over lambda 1 to the power k. And which

gives us the rate of convergence of the power method algorithm. And a it follows that

mod of lambda 1 over lam lambda 2 or lambda 1 is the rate of convergence of the power

method algorithm.

 Now here you can see that the convergence will be fast if mod of lambda 2 what lambda

1 is very, very less than 1, because then it be having a mod of lambda 2 over lambda 1 to

the power k, as k goes to infinity as k takes larger and larger values. If mod of lambda 2



over lambda 1 is very, very less than 1, then y k will be approximately equal to beta 1 k 1

x 1 so, the convergence will be fast. And the y k will tend to beta 1 x 1 very slowly if

mod of lambda 2 over lambda 1 is nearly 1 in which case the convergence of the power

method algorithm will be slow.

Now, so,  when the  modulus  of  lambda 2 over  lambda 1 is  nearly  1 what  we do to

accelerate the rate of convergence of the power method algorithm. So, there is a method

by which we can speed up the rate of convergence of the power method, in the case

where mod of lambda 2 over lambda 1 is nearly one. And that method is the method of

power method with shift. So, let us see how we apply that method to accelerate the rate

of convergence.

. So, when the again I repeat when we have mod of lambda 2 lambda 1 nearly equal to 1,

we apply power method with a shift to improve the rate of convergence.
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So, let us discuss power method with a shift. Let A be a real diagonalizable n by n matrix

with  eigenvalues  ordered  such that  mod of  lambda  1 is  greater  than  mod lambda  2

greater than or equal to mod lambda 3 and so on, mod greater than or equal to mod

lambda n. So, again lambda 1 is the dominant eigenvalue here and lambda is the sub

dominant eigenvalue of A.



Let us say x i be the eigenvector of A corresponding to the eigenvalue lambda i of A for i

equal to 1 to 3 and so on up to one. And so, lambda 1 lambda 2 and lambda n are

eigenvalues of A, and x 1 x 2 x n are the corresponding eigenvectors of A. Since lambda

one is the dominant eigenvalue of A, and we have seen in the previous lecture that if

lambda 1 is the dominant eigenvalue of A, then it is algebra is algebraic multiplicity is

one,  and  moreover  it  is  real,  this  we  have  seen.  So,  since  lambda  1  the  dominant

eigenvalue of A is real the corresponding eigenvector x one is also real. You see, we have

suppose  lambda  1  is  the  dominant  eigenvalue  of  A and  x  1  is  the  corresponding

eigenvector then what do we have?

So,  so,  let  us  say  lambda  1  be  the  eigenvalue  of  A,  and  x  1  be  the  corresponding

eigenvector.
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Then we have a x 1 equal to lambda 1 x 1. Lambda 1 is real; A is a real matrix ok. So, x 1

will have to be real eigenvector. So, the corresponding eigenvector x 1 is real.
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Now, let us consider the matrix A minus rho I where rho is a real constant. If lambda i, i

equal to 1 to n is an eigenvalue of A then lambda i minus rho i, lambda i minus rho is an

eigenvalue of A minus rho I. Y because let us say if lambda is an eigenvalue of lambda i

is an eigenvalue of the matrix A, and xi is the corresponding eigenvector, then Ai Axi is

equal to lambda i xi ok, we have this matrix equation.

Now, let us say let us consider A minus rho I matrix. A is a n by n matrix, this A matrix

rho is a constant. I is unit matrix of order n. So, A minus rho I let us multiply it y xi. So,

what do we get? Axi minus rho times Ixi that is xi, ok. Axi is equal to lambda Ixi so,

what do we get? A minus rho I into xi equal to lambda i minus rho into x i. So, if x i if

lambda is an eigenvalue of A corresponding and xi is the corresponding eigenvector, then

lambda i minus rho is the corresponding eigenvalue of A minus rho I. So, if lambda is an

eigenvalue of A then lambda i minus rho is an eigenvalue of A minus rho I, and xi is the

corresponding eigenvector. Eigenvector does not change ok, for every i.
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Now, if lambda i minus rho is the dominant eigenvalue of A minus rho I ok, then power

method applied to the matrix A minus rho i. So, let us assume that lambda lambda 1

minus rho is the dominant eigenvalue ok, lambda 1 minus rho is the dominant eigenvalue

of A minus rho I then the power method applied to the matrix A minus rho I has the rate

of convergence mod of lambda 2 minus rho upon lambda 1 minus rho, ok.

. So, now if we choose this rho in a suitable manner then mod of lambda 2 minus rho

upon lambda 1 minus rho can be made much smaller than mod of lambda 2 over lambda

1, which is nearly one we are assuming. So, mod of lambda 1 minus rho lambda 2 minus

rho lambda 1 minus rho can be made much smaller than 1 and therefore, the by shifting

the origin the rate  of convergence  of  the power method improves.  This  technique  is

called the power method with shift and it is very useful in applications as it gives the

faster rate of convergence.

 Let us illustrate this by an example. Let us consider the matrix A equal to 29 1 5 327

minus 1 2 minus 230.
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Then the you then if you calculate the eigenvalues of this 3 by 3 matrix which will not

difficult to find ok, what do we get? Lambda 1 equal to 32 lambda 2 equal to 30 and

lambda 3 equal to 24. The rate of convergence of the power method here, now you see

lambda 1 equal to 32, lambda 2 equal to 30, lambda 3 equal to 24, ok.

So, we can see that, lambda 1 is the dominant eigenvalue here, because lambda 1 is

greater than lambda 2, lambda 2 is greater than 3. So, the rate of convergence of the

power method will be mod of lambda 2 lambda 1, which is equal to 30 over 32, ok.

Lambda 2 is the subdominant eigenvalue which is 30 and lambda 1 is 32. So, 30 over 32

if you determine it comes out to be 0.9375 which is approximately equal to 1.

So, what we do? if you apply power method algorithm here, then the rate of convergence

will be very slow because mod of lambda 2 over lambda 1 is not very, very small smaller

than 1, very, very is less than 1. So, what we do is, we apply power method with the shift

let us consider the matrix A minus rho I. We call this matrix A minus rho I as B ok, and

choose rho as 26. So, when you choose rho as 26, A minus rho I A minus rho I is the

matrix where the diagonal entries of A are subtracted by rho ok. So, the diagonal entries

of a are subtracted by 26 and when we do that it comes out to be c we diagonal entries of

A are subtracted by 26. So, they will become 3 1, and here 4 and we get the matrix B, B

is the matrix 3 1 5 3 1 minus 1 2 minus 2 4 ok.
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And the eigenvalues of v if they are determined, they come out to be let us denote them

by mu 1 mu 2 mu 3, then they come out to be mu 1 equal to 6 mu 2 equal to 4, and 3

equal to minus 2.

And you so, if you see the dominant eigenvalue here. It is 6 sub dominant eigenvalue is

4. So, what do we get rate of convergence of this matrix, rate of convergence of the

power method here is mu 2 over mu 1, ok. Mod of mu 2 over mu 1 and mu 2 is 4 mu 1 is

6, ok. So, we get 2 by 3 so, which is equal to 0.667, ok. So, which is much smaller than 1

ok,  and  n  which  is  smaller  than  much  smaller  than  0.9375,  which  was  the  rate  of

convergence of the power method before using the shifting.

So, the power method after we applied shifting, improves the rate of convergence of the

power method improves ok. So, hence the power method applied to the matrix B yields a

faster  rate  of  convergence.  Because  here  the  ratio  of  the  dominance  of  dominant

eigenvalue, and the dominant eigenvalue is much smaller than 1, it is 0.6677.

Now, if  a  has  all  real  eigenvalue,  ok.  If  it  so happen that  the  matrix  A has  all  real

eigenvalues, then rho can be chosen the on case to case basis we have to see the problem,

and there we have to choose a rho accordingly. In 1965 Wilkinson showed that the best

choice for rho is lambda 2 plus lambda n by 2 lambda 2 plus lambda n by 2.



(Refer Slide Time: 24:54)

But we notice that f is a real n by n matrix with the eigenvalues ordered so that lambda 1

is greater than lambda 2 greater than or equal to lambda 3 and so on greater than or equal

to  lambda  n;  that  means,  we are  if  A is  a  real  matrix  diagonalizable  matrix  whose

eigenvalues are all real such that they are ordered that lambda 1 greater than lambda 2

greater than or equal to lambda 2 lambda 3 and so on, greater than or equal to lambda n

then do will Wilkinson said that the base choice for rho is lambda 2 plus lambda n by 2,

ok.

But then we see that there exist examples where it is not true. So, we shall see that the

rate of convergence of the shifted matrix A minus rho I, can we still can still be slow? A

if  be  if  the  will  be  apply  the  we  will  concern  formula,  ok.  Wilkinson  formula  so,

Wilkinson formula does not always give the faster convergence, ok. And moreover, to

apply the Wilkinson’s formula one has to know the sub dominant eigenvalue lambda 2,

and  the  least  dominant  eigenvalue  lambda  n,  beta  not  available  a  priori  ok.  So,  his

formula is not useful in practice we can say.

Let us illustrate that by an example that the Wilkinson’s formula does not always give a

good choice of rho.
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So,  let  us  consider  a  matrix  real  matrix  30  by  30  real  matrix.  Suppose  whose  the

eigenvalues of this 30 by 3, 30 matrix Are 13 329 28 27 and so on, 2 1, ok. Then the rate

of the convergence by the power method for the matrix A is equal to mod of lambda 2

over lambda 1, lambda 2 will be equal to 29, and lambda 1 will be equal to 30. Because

30 is the dominant eigenvalue and chop dominate eigenvalue is 29. So, 29 by 30 will be

equal to 0.9667, which is approximately one.

Now, let us find the value of rho by using Wilkinson’s formula. So, rho gives is equal to

lambda 2 plus lambda and lambda 2 is equal to 29, lambda n equal to 1 ok.
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So, lambda 2 plus lambda 1 divided by 2 is 29 plus 1 by 2 which is equal to 15. So, by

Wilkinson formula, the value of rho comes out to be 15. So, if you take this value of rho,

then what do we get? Then the matrix B, which is equal to A minus rho I will have again

values lambda i minus rho lambda is an ith eigenvalue of A. So, eigenvalue B will now

become 15 14 2 1 0 minus 1 minus 2 and so on minus 14 earlier there were 329 now they

will all be subtracted by 15.

. So, the rate of convergence of the power method algorithm applied to the matrix B will

be then equal to again mod of lambda 2 over lambda 1 now lambda 2 is equal to 14 and

lambda one is equal to 15. So, 14 by 15 which is 0.9333. So, we can see that we do not

get  a  faster  convergence,  by  making  a  choice  of  rho  as  per  the  formula  given  by

Wilkinson mod of lambda 2 by lambda 1 here is not very, very less than mod of lambda 2

by lambda 1, before using this value of rho, ok.

So, hence we obtain a slow convergence, for the shifted matrix B as well. So, we can say

that the Wilkinson’s formula does not always result in faster convergence. So, we have to

when we have to take a value of for a as per our problem. Let us see how we will choose

the value of rho.
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So, let us say let us take this problem A equal to a 91, let us take this 3 by 3 matrix A

equal to 91 minus 23 25, 10, 58, 36, 9, 9, 61 then the eigenvalues of this matrix are 72,

70, 68. So, if you apply power method to this matrix, then the rate of convergence will be

lambda 2 over lambda 1, mod of lambda over lambda 1 which is 70 over 72 which is

approximately equal to 1. So, we shall see that the rate of convergence of the power

method algorithm applied to the matrix A is very slow ok, let us illustrate this.

. So, what we will do and in the previous lecture be it is convention to start with the

initial vector y naught as 1 1 1. So, here we take y naught as 1 1 1 transpose, and k

denotes k equal to 1 denotes the first iteration. So, in the first iteration we find we apply

power method algorithm. So, z z k equal to Ayk minus 1, in the power method algorithm

zk equal to Ayk minus 1, where k is equal to 1, 2, 3 and so on.

So, z 1 is equal to Ay naught the matrix A which is this here this matrix. It is multiplied y

naught the column vector 1 1 1 ok. And then what we get is the column vector 93 1 0 4

61. And maximum of these 3 component of z 1 is equal to 1 0 4 maximum, z 1 is 1 0 4.

So, then we find y 1, y 1 is z 1 zk, y k is equal to y k equal to zk upon maximum of zk k,

k equal to 1 2 3 and so on so, y 1 is equal to z 1 over maximum of z 1.
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So, the z 1 vector which is this column vector 93, 1, 0, 4, 61 it is divided by 1 0 4; that is,

each component of z 1 is divided by 1 0 4 and that we get is this vector, 0.8942 to 1.0000

0.5856 this column vector we get, ok.

Now, let  us  take  these  second  iteration  k  equal  to  2.  So,  z  2  is  equal  to  A by  1.

Multiplying matrix, A by this y 1 vector this column vector and we arrive at z 2, which is

73.0385, 88.0577, 34.8269, this vector, ok, and maximum of z 2 here you can see is

88.0577 ok.

. So now, we can determine y 2 vector, y 2 vector is z 2 over maximum of z 2 divide the

z 2 vector by the maximum value of z 2; that is, 88.0577 you get y 2 vector which is

0.8294 1.0000 0.3955; this column vector. We go on finding out zk in this manner. In this

manner when we proceed in the twentieth iteration, ok. In the twentieth iteration that is

when k is equal to 20, z 20 comes out to be minus 21.0335 52.3963 minus 19.0489, and

maximum  of  z  naught  therefore,  is  equal  to  maximum  of  z  20  maximum  of  z  20,

therefore, is 52.3963.
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Now, so, now let us find y 20, y 20 is z 20 divided by maximum of z 20, and it is minus

0.4014, 1.0000, minus 0.3636, ok. Now we can see that maximum of z 20 is 52.3963.

And y 20 is this vector so, maximum of zk ok, we have shown earlier that maximum of

zk when k goes to infinity goes to lambda 1 ok.
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As k goes to infinity so, maximum of zk goes to lambda 1 as k goes to infinity. So, here

we can say that here we can see that even after 20 iterations the value of maximum value

of z 20 is 52 5 3 9 6 3, which is a poor approximation to the dominant eigenvalue lambda



1 equal to 72, because it is quite far away lambda 1 is from in 72, while maximum of z

20 is 52.3963.

So, we go on finding we go on iterating,  maybe we have to be very large after that

become very near to lambda 1 equal to 72. So, we can say that when we apply power

method algorithm without shifting ok, then the rate of convergence is very slow. And

moreover, you can see that Ay 20, the matrix A multiplied by this y 20 vector the column

vector. This column vector is the eigenvector corresponding to the eigenvalue 52.3963.

So, Ay 20 minus maximum of z 20 into y 20 is  the equal  to  minus 47.5855, minus

11.4985 and minus 15.7408.

So,  Ay 20  is  not  very  good  approximation  to  maximum  of  z  20  into  y  20,  that  is

difference of Ay 20, and maximum of z 20 in 2 y 20 is not very small, ok. Because if by

20 is to be the eigenvector corresponding to the eigenvalue maximum z 20, then a y 20

minus maximum z 20 into y 20 must be very small that; that means, the this right side

column vector the components of the column vector must be nearly I mean nearly 0.

So, the so, here the poor convergence is due to defect that mod of lambda 2 over lambda

1 is equal to 0.9722. As I said in the beginning of this example that is lambda 2 is 70 here

lambda 1 is 72 lambda 2 lambda 2 is 72 and lambda 2 is 71 here. So, that is the that

comes out to be 0.9722 which is very near to 1, and therefore, the poor convergence is

due to that in the of the power method algorithm, ok.
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Now, we will consider a shift of origin. So, let us choose the rho to be 69. And then the

eigenvalue of so then the matrix B will be equal to A minus rho I, the diagonal l in

entries of a will be subtracted by rho that is 69, and what the matrix B comes out to be B

is comes out to be 22 minus 23 25 10 11 36 9 minus 9 minus 8. And the eigenvalues of

the  matrix  then  will  be  equal  to  the  eigenvalues  of  A will  be subtracted  by 69.  So,

dominant eigenvalues of 72 when subtracted with 69 gives you mu 1 equal to 3 then sub

dominant eigenvalue lambda 2 was 70 which when B subtract by 69 we get mu 2 equal

to 1. And the third eigenvalue was lambda 3 equal to 68. So, when we subtract lambda 3

by 69 we get mu 3 which is equal to minus 1.

So, now you can see. So, here the rate of convergence will be mod of mu 2 over mu 1,

ok. And mu 2 is one while mu mu 1 is equal to 3 so, 1 over 3; that means, 0.3333 ok,

which is very much less than 1. And therefore, if we use this rho value of rho and if you

we use the power method with the shift, then this method will converge very, very fast.

So, thus we shall have a faster convergence of the power method.

Let us see how what convergence rate here we get.
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So, again we start with y naught initial approximation y naught equal to 1 1 1, we begin

with be first iteration k equal to 1. Now so, we will apply the power method algorithm to

the matrix B should you add 1 equal to B y naught, B why not gives you 24 35 minus 8



the column vector 24 35 minus 8. And maximum of z 1 is equal to 35 so, we can find y

1-year y 1 comes out to be 0.6857 1.0000 minus 0.2296.

Now, in this second iteration you see, z 2 equal to by one gives minus 13.6286 minus

12.3714 minus 1 point 0 0 0 0, and maximum z 2 comes out to be minus 13.6286, and y

2 comes out to be this 1.00000, 0.9078 0.0734, ok.
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 Now proceed in a similar manner, in a in the 11th iteration, z 11 comes out to be 3.0000,

2.7239, 0.2259. And so, the maximum value of z 1 is 3.0000. And if we determine y 1 1,

y 1 1 comes out to be z 1 1 over maximum of z 1 1 ok. And so, it is 1.00000, 0.9080 and

0.0753 maximum of z 1 1 here. You can see maximum of z 1 1 is 3 and the dominant

eigenvalue of the matrix B was also 3 ok.

So, maximum of z 1 1 is equal to the dominant eigenvalue of the matrix e which is mu 1

ok, they are equal. And moreover, that be y 1 1 minus maximum of z 11 which is 3 into y

11, comes out to be 10 to the power minus 4 into this column vector 0.5187 0.5083

0.114, ok, these components of the vector is are multiplied by 10 to the power minus 4.

So, each component is very near to 0. So, B y 11 minus 3 y 11 is approximately equal to

the 0 vector, ok. And therefore, we can say that, y 11 is a good approximation for the

eigenvector, x 1 of B corresponding to the eigenvalue lambda 1 of mu 1 of B.



So,  you  can  see  by  applying  the  power  method  with  a  shift,  we  can  get  the  the

convergence very fast, ok. So, this is what I have to say in this lecture.

Thank you very much for your attention.


