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Householder matrices

Hello friends. Welcome to this lecture. In this lecture,  we will discuss the concept of

householder matrices and its application in a QR factorization of a matrix A. So, first let

us define; what is householder matrices and what is basically role of this householder

matrix.

So, here to define householder matrix basically, it is a householder matrix is given by the

matrix of the form I minus 2 omega omega transpose where omega is a unit vector in R

n.

(Refer Slide Time: 00:54)

Now, how we define unit vector. So, a vector x in R n is called a unit vector if 2 norm of

x is equal to 1 here, we are defining you can take any norm. In fact, norm of x is equal to

1 and or we can say that in other word, we can say that x a lies on the unit sphere S 2

where S 2 is defined as a set of all x in R n such that 2 norm of x is given as 1.



So, with the help of unit vector, you can define householder matrix is of this kind H is

equal to I minus 2 omega omega transpose where omega is any unit vector in R n; So,

now, once the householder matrix is defined. 

(Refer Slide Time: 01:42)

Let us consider some basic properties of householder matrix. So, so, to say that let H be a

householder matrix defined by H as I minus 2 omega omega transpose where omega is a

unit vector in R n and let S be a subspace of R n which is of dimension one and it is

spanned by this unit vector w and we can extend this vector w to the entire basis of R n

and we can generate a subspace which is known as S perp and we can write R ns S direct

sum with S perp and it means that the every element in R n can be written as sum of the

element of S and element of S perp and this representation is a unique representation.

It means that any vector in x in R n can be written as x of S plus x of N whereas, x of S is

a member in S and x of N is a member of S perp then the following properties holds true.
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So, first property is that if x belongs to S, then if we operate H on x, then it is coming out

to be minus x similarly if we take x in S perp, then image of x under H is going to be X

itself and if x is equal to x S plus x N where x S is a member in S and x N is a member of

S perp then H of x is given by minus x of S plus x of N and H is an involution matrix or

you can say that H square is equal to I and H has only 2 only Eigenvalues plus minus 1 it

means that  Eigen space of  Eigenvalues  of  H is  minus 1 and 1 and the Eigen space

corresponding to the Eigenvalue lambda 1 equal to minus 1 of H is the S. 

So,  it  means  that  I  gain  space  corresponding  to  minus  1  is  S  and  Eigen  space

corresponding to lambda 2 equal to 1 is S perp.

Or in other word, you can say that the geometric multiplicity of lambda 1 equal to minus

1 is 1 and geometric multiplicity of lambda 2 equal to 1 is N minus 1 and determinant of

H is equal to minus 1 that we can calculate.
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And H preserve the 2 norm vectors in R n, it means that 2 norm of H of x is same as 2

norm of  x  for  every  x  in  R  n  and  H  means  householder  matrix  is  symmetric  and

orthogonal matrix.

(Refer Slide Time: 04:35)

So, the these are some set of basic properties of householder matrix and we try to give a

very simple or very quick proof of these properties.
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So, let us start with one. So, here if x belongs to S then x is alpha omega where omega is

the vector unit vector which is spanned the space S. So, x is equal to alpha omega and if

we operate  H on this  alpha  omega,  then  it  is  nothing,  but  I  minus 2 omega omega

transpose x that is x minus 2 omega omega transpose. Now we are writing x as alpha

omega, then alpha you can take it out. So, x minus 2 alpha omega and omega transpose

omega is nothing, but 2 norm of omega whole square.

Now, since omega is a unit vector. So, it is coming out to be 1. So, it is nothing, but x

minus 2 alpha alpha omega and 2 alpha omega is 2 x y because alpha omega is x. So, this

is nothing, but x minus 2 x which you simplify then it is coming out to be minus x. So, if

x belongs to S then H of x is equal to minus of x.

Now move. So, the one is quite obvious you simply apply and you can see that now if x

belongs to S perp, it means that x dot omega is equal to 0 right and then we calculate H

of x which is nothing, but I minus 2 omega omega transpose x when you simplify that

this is x minus 2 omega omega transpose x. Now, omega transpose is x is nothing, but x

dot omega and it is coming out to be 0. So, this is x minus 0, it means this x; so, H x is

equal to x when x is in S perp. So, this is also straightforward.

Now, let us prove that if x is an any vector in R n, then we can uniquely represent x as x

of S plus x of N where x axis in S and S n is an S perp, then using 1 and 2 these we say

that H of x which is nothing, but H of x S plus H of x n. Now H of x S is nothing, but



minus of x S that is clear from one and H of x N is x N that is clear from this 2. So, H of

x is equal to minus x of S plus x of n.
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So, that gives you the proof of third property now look at the fourth property that a H

square is an H is in evolution or we can say that H square is equal to I for that we already

know that H of x is equal to minus x of S plus x of N where x is any vector in R n and x

S and x N is the part of x in S and S perp and this representation of x is unique.

So, when you operate H on this H of x then H will be operated on minus x of S plus x of

N now again using one and 2 H of minus x of S is minus of minus x. So, that is x of S

plus x f N. So, this is nothing, but x. So, H square x is equal to x and this is true for every

vector in r of N. So, we can show that this implies that H square equal to I. So, we can

repeat this process for each E I where E I is the unit vector you can say and that basis

element standard basis element of R n. So, H square is equal to I.
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Now in fifth,  we try to  find  out  the Eigenvalues  of  matrix  H for  that  lambda is  an

Eigenvalue of H if H of H of x equal to lambda x and we want to find out that what are

the Eigenvalues of lambda. So, for that we start with the this that x can be written as I of

x and we already know that I is H square you can say that H is squares I. 

So, here I can say that x is equal to H square x now H square x I can write it H of H of x.

Now H of x we already knew know; that it is lambda of x. So, H of lambda x is equal to

lambda of H of x. Now, again H of x is equal to lambda x which is given as lambda

square x.

So, it means that x equal to lambda square x or you can simplify, then it is lambda square

minus 1 x equal to 0. Now, x is an Eigenvector corresponding to lambda, it means that x

is a nonzero vector. So, this thing this lambda square minus 1 into x is equal to 0 possible

only when lambda square is equal to 1 or we can say that lambda is equal to plus minus

1.  So,  it  means  that  Eigenvalues  of  H  is  either  1  or  minus  1.  So,  this  says  that

Eigenvalues of um this householder matrix is either 1 or minus 1.
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Now, coming out  about  the Eigen space  here,  we want  to  find out  say Eigen space

corresponding to lambda 1 equal to minus 1 and lambda 2 equal to minus 1 for that

please observe that x if you take any x in R n, then it has a unique representation given as

x of S plus x of N where x of S is element S here and x N is an element in S perp then if

you  operate  H  minus  lambda  I  I  into  x,  we  want  to  find  out  say  the  eigenvector

corresponding to lambda 1.

So, H minus lambda 1 into x is equal to H plus I here lambda 1 I am taking as minus 1,

then H plus I operating on x. So, it is nothing, but H of x plus x. Now, we already know;

what is H of x? H of x is given as minus x of S plus x of N and x is given as x of S plus x

of N. So, it is given as 2 of x N.

Now, it means that H minus lambda 1 x is always coming out to be 2 of x N; so, it means

that if this x is an eigenvector corresponding to lambda 1, then H minus lambda 1 x has

to be 0. So, it means that x N has to be 0 if x is an eigenvector corresponding to lambda

1. So, this implies that x belongs to null space of H minus lambda 1, I provided that this

x N is equal to 0. Now if x N is 0, then your x is nothing, but x of s.

So, it means that the Eigen vector corresponding to lambda 1 equal to minus 1 is nothing,

but x which is given in x. So, it means that x belongs to null space of H minus lambda 1

I, it means that x is in S. Similarly, we can prove that x belongs to S implies that x

belongs  to  null  space  of  H  minus  lambda  1  I.  So,  it  means  that  Eigen  space



corresponding rule lambda 1 equal to minus 1 is nothing, but null space of H minus

lambda 1 I, this is by definition of Eigen vector and it is coming out to be S. So, it means

that Eigen space corresponding to lambda 1 equal to minus 1 is S here. So, we can say

that dimension of S is 1. So, it means that geometric multiplicity of lambda 1 which is

minus 1 is 1 here.

Now to find out the Eigen space corresponding to lambda 2 equal to minus 1 we repeat

this process and we have H minus lambda 2 y x equal to H minus I into x and this is

nothing, but H x minus x and when we simplify the H x H S 6 given by minus x of S plus

x of N minus x S plus x, it is coming out to be minus 2 of x S. So, it means that if x

belongs to null space of H minus lambda 2 y this implies that x of S equal to 0.

Similarly, if x S x of S is equal to 0 then H minus lambda 2 y x equal to 0; so, it means

that x belongs to null space of H minus lambda 2 y. So, it means that if x belongs to null

space of H minus lambda 2 y implied and implied by that x of S equal to 0. Now f of x of

S is equal to 0 means your x is nothing, but x and or we can say that your x is in S perp.

So, it means that x belongs to null space of H minus lambda 2 y is implied and implied

by that x belongs to S perp.

It means that Eigen space corresponding to lambda 2 equal to 1 is nothing, but null space

of  H minus  lambda  2  I  which  is  nothing,  but  S  perp.  So,  it  means  that  geometric

multiplicity of lambda 2 as one is N minus 1 that is the dimension of S perp. So, here

which we have find out we are able to find out the Eigen space corresponding to lambda

1 equal to minus 1 and lambda 2 as 1.
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Now, with the help of Eigenvalues; we can easily calculate the determinant of H that is

product of Eigenvalues and we already know that geometric multiplicity of lambda 1 is

equal to minus 1 and geometric multiplicity of lambda 2 equal to 1 is N minus 1 and we

already know that algebraic multiplicity of Eigenvalues is always greater than or equal to

geometric multiplicity.

So, here we can say that this one has algebraic multiplicity one and algebraic multiplicity

of lambda 2 equal to 1 is N minus 1. So, determinant of H is given by minus 1 into N

minus  times  1.  So,  it  means  it  is  given  by  minus  1.  So,  householder  matrix  is  a

nonsingular matrix and determinant of H is given as minus 1.

Now, we want to show that. So, that gives you the determinant of H is equal to minus 1.

Now in eighth; we try to show that it preserved the 2 norm of x. So, it means that 2 norm

of H x is same as 2 norm of x; So, for that just calculate the 2 norm of H S H f x. So, let

us consider the 2 norm of H of x whole square. So, H of x we already know that it is

minus of x S plus x N 2 norm of this whole square.

Now, what is this x S N; x N this x has this unique representation x S plus x N. So, if you

take the square of this then since x of S and x x of N are orthogonal to each other, then

we can simplify this and we can write this as 2 norm of x of S whole square plus 2 norm

of x and whole square and if you see that this is nothing, but 2 norm of x where 2 norm



of x whole square is given by 2 norm of x S whole square plus 2 2 norm of x and whole

square..

So, it means that 2 norm of H x whole square is nothing, but 2 norm of x whole square.

So, this implies that 2 norm of H x is equal to 2 norm of x. So, here we have proved that

2 norm of H of x whole square is nothing, but 2 norm of x whole square. So, by taking

the square root we have the result which we wanted to prove that it preserve the length

under 2 norms. So, H x 2 norm of H x is equal to 2 norm of x. 
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Now, you want to show that H is a symmetric matrix and H is orthogonal matrix. So, to

show that H is orthogonal and symmetric matrix we have this that 2 norm of H x is same

as 2 norm of x and if we simplify, then we have this in terms of inner product, we have x

transpose H transpose H x equal to x transpose x equal to x transpose x where x is any

member in R m. Since, this is true for any member in R n then we can say that this

implies that H transpose H is nothing, but identity matrix and that shows that H is an

orthogonal matrix.

In fact, this you can also prove with the present representation of H that is I minus 2

omega omega transpose. So, we will proved it you know. So, now, to prove that H is

symmetric we can start with we are showing that S transpose is equal to H for that we

observe that we have already proved that H is H is an involution means H square is equal

to I and here we have H transpose H equal to I and we know that the inverse of a matrix



if  it  exists  has  to  be  unique.  So,  it  means that  S transpose,  this  simply says  that  H

transpose is the inverse of H and this says that H is be the inverse of H itself. So, this

implies that combining these 2 result, we can say that H transpose is equal to H it means

that H is a symmetric matrix. So, H is orthogonal H is symmetric matrix. 

And this you can prove without going here and you can simply say that you start with H

transpose and H transpose, you can say that I minus 2 omega omega transpose whole

transpose which is nothing, but I transpose into minus 2 omega omega transpose omega

transpose whole transpose into omega transpose and if you simplify; it is coming out to

be H. So, you can say that H transpose is coming out to be H. So, this you can prove with

the help of this form of matrix H. 

So, here we have shown that H is a symmetric matrix. So, here we have done the proof

by uniqueness of a inverse matrix and we can show the same by exactly finding the

transpose of matrix H and we have shown that it is coming out to be H similarly we can

prove that H is orthogonal with the help of the form of H.
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In fact, you can see that H transpose H is what H transpose is nothing, but I minus 2

omega omega transpose whole transpose into I minus 2 omega omega transpose and if

you calculate we just have seen that H transpose is same as H. So, we have I minus 2

omega  omega  transpose  into  I  minus  2  omega  omega  transpose  and  if  you  if  you



simplify, then it is I minus 2 omega omega transpose minus 2 omega omega transpose

plus 4 times omega omega transpose into omega omega transpose.

So, this is what here this omega transpose omega is norm of omega with respect to 2

norm and since, it is a unit vector. So, it is coming out to be 1. So, it is nothing, but I

minus 2 omega omega transpose minus 2 omega omega transpose plus 4 times omega

omega transpose. So, these will cancel out and it is coming out to be I. So, if you do not

want to use the result given in 8; you can directly prove it is quite easy. 
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Now, let us coming out to be and the important result by a for which we are discussing

this household matrix the important application or very very important application of

householder  matrix  is  that  given  any  2  unit  vectors;  we  can  define  our  matrix

householder matrix H such that H of u is going to be v. So, here u and v be any 2 unit

vectors then we can define H as householder matrix defined by H as I minus 2 omega

omega transpose where omega is nothing, but u minus v divided by v 2 norm of u minus

v then such a matrix H which will send u to v. So, it means that H of u equal to v. 

Now, the important part of this theorem is that; now we may have very a desired property

it means that here I can take v as a E 1 E 2 E 3 and so on. So, it means that is the

application of this matrix that you can send any vector u to E 1 same. So, we will see that

why it is going to be useful. In fact, by this property only we can say that it is useful in

finding the QR factorization of a given matrix. So, let us first prove this theorem.
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So, to prove this theorem; you simply observe ww transpose; so, w is u minus v divided

by 2 norm of u minus v and w transpose is u transpose minus v transpose divided by 2

norm of u minus v. So, in denominator, we have 2 norm of u minus v whole square and

in numerator we have this product and if you simplify it is u minus v into u transpose

minus u minus v into v transpose and in numerator in denominator, we can simplify this

and we can say that it is 2 norm of u whole square plus 2 norm of v whole square minus

2 times of inner product of u and v.

Now, this further can be simplified since u and v are unit factor. So, this is 1 plus 1 minus

2 times u comma and dot v and we can write, we can simplify ww transpose as 1 upon 2

1 minus u dot v into u minus v u transpose minus u minus v v transpose.

Now, let  us  calculate  the H of  u.  So,  H of  u  is  u  minus  2 omega omega transpose

operating on u. So, u minus now here we are writing 2 times 2; we will be cancelled by

this. So, it is one upon one minus u dot v into this operating on u. So, it is u minus v u

transpose u minus u minus v transpose u. Now u is a unit vector. So, u transpose u is

nothing, but 1 v transpose u is nothing, but u dot v. So, we this is nothing, but u dot v. So,

we this can be simplified as H of u is equal to this is u. So, it is u here minus 1 upon 1

minus u dot v and in bracket u minus v; now this is 1. So, I am writing 1 minus u minus

v into u dot v.



So, here u minus v you can take it out and what is left here it is 1 minus u dot v which is

also in denominator. So, this will cancel out each other and we can say that at H of u is

equal to u minus this will cancel out; so, u minus u minus v. So, it is coming out to be v.

So, here we say that H of u is coming out to be v.
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So, if this proves the theorem here that if u and v be any 2 unit vectors in R n, then we

can form a matrix H householder matrix H as I minus 2 omega omega transpose where

omega is given by u minus v divided by 2 norm of u minus v then such a matrix H will

send u to v. So, H of u is going to be v we will see that we will going to utilize this

important theorem later on.

So, now, based on this important theorem, since here we have used that u and v are both

you unit vectors. 
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Now, consider a simple corollary based on this that you and we may not be same unit

vectors. So, let us say let x and y be any 2 nonzero vectors in R n such that x is not equal

to y, then we can apply our theorem by writing u as x upon 2 norm of x and we as y upon

2 norm of y and if we again apply our theorem, then H we can form as I minus 2 omega

omega transpose where omega is u minus v upon 2 norm of u minus v then claim is that

H of x is nothing, but mu into y where mu is some constant it is given by 2 norm of x

divided by 2 norm of y that is our claim; let us prove this claim this is quite simple.
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So, here to prove this we already know that H of u is going to be v because u and v are

unit vectors and w is defined as u minus v divided by 2 norm of u minus v. So, it means

that H of u is going to be v here, now what is u here? U is defined as x u as x upon 2

norm of x.

So, let me write it here H with the help of this if you want to find out H of x where H of

x is given by 2 norm of x into u. Now 2 norm of x; we can take it out because it is just a

constant. So, 2 norm of x into H of u and H of u is nothing, but v. So, it is given by 2

norm of x into v. Now, what is v here v is nothing, but y divided by 2 norm of y. So, we

can write H of x equal to 2 norm of x divided by 2 of y into y and we can call this as

some constant call it mu. 

So, H of x is equal to mu of y and this complete the proof of the corollary that even if we

do not have x and y as nonzero vector, it is not a unit vector, but it still I can send x under

this H to some constant multiple of y and this constant is coming out to be 2 norm of x

divided by 2 norm of y here. 
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Now, we apply our householder matrix to convert a a given vector x into e 1 or some

constant multiple of e 1. So, here we want to find out a householder matrix H such that

given a vector x in R n we convert H of x as anything nonzero quantity at first place and

rest on it is zero. So, it is constant multiple of e 1. 



So, this can be easily done by writing u as x upon 2 norm of x and we as say minus sign

of x 1 into e 1. So, here sine function is defined as this that sine of x 1 is equal to 1 if x 1

is greater than or equal to 0 and sine of x 1 is equal to minus 1 if x 1 is less than 0 and e 1

is the unit vector having one at the first place the rest of all 0. 

(Refer Slide Time: 28:11)

So, how we can do that let us we can define u minus v as z.
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So, z can be written as x plus sine function of x 1 where x 1 is the first component of x

into 2 norm of x into e 1 divided by 2 norm of x m and we already know that w is what u



minus v divided by norm of v. So, here we can write w in terms of z as z divided by 2

norm of z, it is just simplification of the procedure. So, once we have w we can define H

as I minus 2 omega omega transpose.

Then we know that by above corollary that previous corollary that H of x is equal to mu

of E one where mu is nothing, but minus sign of x one into 2 norm of x m. So, that we

are going to see and this is numerically stable way to introducing zeros in a given vector

x. So, it means that if you look at this, then H of x is now map do some constant multiple

of e 1 where mu is given as minus sign of x 1 into 2 norm of x. 
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So, we can summarize whatever we have discussed as an algorithm and this algorithm do

this that introducing zeroes in a vector using householder matrices. So, what it is given a

vector x in R n the following algorithm finds a householder matrix H which is given as I

minus 2 omega omega transpose where omega is a unit vectors. So, 2 norm of omega is

equal to 1 such that H x is equal to mu of e 1 where mu is given as minus sign of x 1 into

2 norm of x where x 1 is the first component of x. 

So, to find out householder matrix we define u and v as u as x divided by 2 norm of x

and we as minus sign of x one into E one. So, once u and we are defined then we define

w as  u  minus  v  divided  by 2  norm of  u  minus  v  and  once  w is  known to  us  our

householder matrix is given as H as I minus 2 omega omega transpose. So, this is an

algorithm which finds a householder matrix which map a any non zero vector x to mu



times e 1 where mu is some constant and e 1 is the first unit vector having first position

as one and rest of all zeros.

So, this is the algorithm now based on this algorithm let us find out some example.
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So, first example is this that we have a vector say 4 5 3 minus 2; we have taken any

example. So, we let us take this example and we try to find out the householder matrix

which map; this x into this thing where this first place is nonzero and rest all zero; So,

here we that we have tried to find out this H such that H of x is equal to this. 

So, for that you define u that is x divided by norm of x into norm. So, it is given by this

quantity and v as minus sign of x y into E one now look at the first component that is x

one x one is positive. So, sine of x 1 is given as one. So, this is going to be minus 1 0 0 0

right and now. So, u is known to us v is not known.
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Now, we can find out w by u minus v divided by 2 norm of u minus v which is given by

this quantity and once w is known to as, then we can find out H as I minus 2 omega

omega transpose that is given by this quantity. and we can see that H of x.
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So, if we operate this matrix H on this x it is coming out to be minus 7.3485 and rest all

zeros. So, it means that H of x send x to a vector which is having nonzero entries in the

first place and rest it is all zeros and if you look at the first place is what minus seven

point three point minus 7.3485. So, if you look at mu is what minus sign of x 1 into norm



of x 2 2 norm of x and that is coming out to be minus 7.3485 and which verifies the

algorithm which we have discussed in earlier. 
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So, let us do the same working in MATLAB also. So, let us first you take this you define

x. So, x is x is given as 4 5 minus 3 and 2; I hope it is let us ; so, it is given here 4 or 5 3

2, sorry, 4 5 3 2. So, it is given here.

So, now, we have x as this in fact, how to take the transpose of this. So, let us define as

this. So, x is now; this vector we need to find out u and v. So, we find norm of x here.
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So, norm of x is given as 7.3485. So, here finding the norm with respect to 2 norm if you

do not write anything then it is only with respect to 2 norm then. So, u is basically what u

is x divided by norm of x norm of x. So, if it is coming out to be this my this thing and

you can verify that it is 5.544; 3.68204 that is coming out to be here. So, it is coming out

to be same.

Now, v is quite easy because sine of x one is already known to us. So, we is nothing, but

minus 1 0 0 0.
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So, we can define as my minus 1 0 sorry 0 0 and 0. So, v is this; Now define w; w is

what w is u minus v we can write it divided by norm of u minus v; So, divided by norm

of u minus v right.
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So, it is coming out to be this quantity 0.8787 and that you can verify here it is this w as

u minus v divided by 2 norm of u minus v as this right.

So, this we can verify now to find out H. So, H is given as I.
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Now, here I have to give what is I because. So, I can write it 1 0 0 0 and 0 1 0 0 0 0 0 1

and I think here, I have to write here I did some kind of mistake one here and 0 here and

it is 0 0 0 and 1.
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So, that is your H sorry this is identity matrix. So, H I can write it minus minus 2 into

omega omega into omega transpose omega dash that is your H. So, H is given by minus

0.5443 and so on.
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And that is given here. So, H is coming out to be this. Now if we operate H on x.
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So, H operating on x we will see what it is. So, it  is minus 7.3485 and all these are

entries as 0 and which is given here. 

So, and the first entry is nothing, but minus we already know that what is minus norm of

x.
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So, that is coming out to be oh sorry it is norm of x yeah.
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So, it is coming out to be minus 7.3485. So, it is also matching.

So, that verifies the corollary and algorithm. So, we have verified our algorithm and

corollary  and we stop here.  So,  in  this  lecture what  we have done we have defined

householder matrix and discuss some elementary properties of householder matrix and

with the help of householder matrix.

We have discussed one important  theorem which says  that  if  we have a  to  any unit

vectors then we can find out a householder matrix H such that H send u into v where u

and v are any 2 unit vectors and also we have discussed the corollary where u and we

may not be unit vectors and we have seen one example and based on this corollary an

algorithm.

So, we will continue this study for a matrix. So, it means that if we start with a matrix a

and how we can find out a householder matrix as that its send say first column to say

multiple of e 1 and so on. So, that we are going to discuss in next lecture. So, here we

conclude our lecture thank you for listening us.

Thank you. 


