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Hello friends,  welcome to this  lecture  in  this  lecture.  We will  continue our study of

singular value decomposition. If you recall the last result in previous lecture is the outer

product expansion of a matrix A with the help of single value decomposition.  In that

outer  product  expansion of  a  we generally  write  the matrix  A as the sum of rank 1

matrices.  So,  we  will  continue  our  study  on  remark  based  on  that  outer  product

expansion and you see that how it is important in applications. 

So, we again define we recall that a rank 1 matrix is a matrix with only one linearly

independent  column  or  row,  and  the  primary  idea  in  using  the  SVD  for  image

compression is that we can write a matrix A as a sum of rank 1 matrices.
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And with your theorem which we have proved in previous lecture is that after applying

the SVD to an m cross n matrix A we can write A as follows. A as summation i equal to 1

to r sigma u i v i transpose where r is the rank of A and u i’s are u i is are columns of the

matrix orthogonal matrix U and v i’s are columns of orthogonal matrix V and u i’s are

known as left singular vectors and v i’s are known as right singular vectors.



And here if you look at the each sum in this summation sigma u i v i transpose this has a

rank 1 matrix of size m cross n this we have seen in previous lecture and each term is

known as modes. So, we can write that a can be written as say sum of modes here. 
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And the expression given in 1 is called the outer products. So, this is known as outer

product expansion of the matrix A. 

Now, based on this outer product expansion we you just try to see what is the important

consequences  of  this.  So,  the  discus  result  has  an  important  consequences  in  many

applications the matrix A has a large number of small singular values. So, it means that if

A is very large and if we calculate the say all these singular values of matrix A, it many

times it happened that the large number of small a large number of single values are

having a small values.

So, let us suppose that there are n minus k small singular values of A which can be

neglected. So, out of n your n minus k singular values are very very small compared to

the other k singular values and we can say that we can neglect n minus k small singular

values and which result the approximation of A by this A k, where A k is given by sigma

1 u 1 v 1 transpose plus sigma 2 u 2 v 2 transpose up to sigma k u k v k transpose. 

So, this A k if you simplify it is nothing, but US k and V transpose. I hope you remember

that we have defined the matrix A k as US k V transpose and we know that the rank of



the  matrix  A k  is  A and  that  we  have  seen  that  this  A k  approximate  a  closely

approximate best approximation of the matrix A in the set of the matrices of rank k. So,

A k we have already seen and we have seen that it is a very good approximation of A 

Now, we say that if n minus k are small then this A k will very will approximate of a and

such an approximation can be adequate in application. So, many a times only this much

approximation will  be helpful in dealing the application part  of the problem. So, for

example, in digital image processing even when k is chosen much less than n the digital

image corresponding to A k can be very close to the original image that we are going to

see that and how this is this can be seen. 

Now, if A is n cross n matrix the storage of A k will require only 2 n plus k location. So,

here we can say that the storage of A k requires 2 n k plus k locations and if we compare

with any square then it is quite lesser than n square. So, it means that we will save a large

amount of space and time, if we cal if we do calculation with the help of this A k. 

Now, let us take one example and see how this approximation of A by A k will help in

one example of image processing. For that let us consider one example. So, again we had

to use a MATLAB.
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So, we start first by reading the image file. So, let us I am just denoting the file name as

Jaguar. So, let us write a Jaguar as image read and the file name file name I am writing



jaguar dot jpg I am using the jpg format. So, let me write it like this and then we write

the we are only using the grey map.

So, we simply write jaguar as rgb to gray and jaguar and then we double it because we

want to work with say SVD. So, jaguar is double jaguar right. And then if you look at

what file we are dealing with. So, let us screen it image sc and jaguar and we are using

simplest let us say use color map green. So, let me write it here and if you look at this the

file original file in grey color and we want to approximate this file with the help of

singular value decomposition and outer product expansion of A. 

So, we if you look at what is the rank of this of data matrix here jaguar represent the

matrix our data saved in a matrix form and it is 182 cross 277, size of the matrix is 182

cross 277. 
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So, what is the rank of this? So, let us find out the rank of an jaguar and rank of jaguar is

coming out to be 182. So, it means that the here we have singular values we can say that

182 positive singular values we have. 

Now, what we want to, we want to approximate with the help of outer product expansion

here. So, what we try to do let us find out first of all the singular value decomposition of

this. So, you write USV as SVD of the file jaguar. So, here we write like this and then.

So, this is once we have find out say singular value decomposition of the matrix A jaguar



then we try to find out the approximation. So, we start first by figure 2, we want to see

the output in this figure file. So, let us call this figure 2 which is right. Now, it is a blank

screen. Now, we want to approximate this jaguar matrix by A lesser singular values.

So, let us start with the jaguar say we can write it 20 we let us start with 20 and here we

consider only; so first 20 singular values of this matrix jaguar. So, let me write it u and

then we are considering the first 20 columns into S and here we take 1 to 20 rows n

comma 1 to 20 columns. And then product and here we and again we are taking only

same 1 to 1 to 20 columns of this and transpose and then we suppress it right output we

are not considering. So, that a jaguar 20 is the 20 first twentieth approximation of you

can write this as that jaguar 20 is a 20 of the matrix jaguar. 

So  now,  we  want  to  see  that  this  jaguar  20  will  give  how  much  better  or  better

approximation of A matrix or we can say jaguar matrix. So, let us see what this represent.

So, image screen jaguar 20 and again we are using color map gray and if you look at it

then we have this file. And if you look at this file is not a very good approximation of

your original file. So, let us consider more a number of approximation.

So,  rather  than considering only the first  1  T singular  values  let  us  consider  say 50

singular values. So, to find out 50th approximation let us write it jaguar 50 and it is. So,

here to find out the 50th approximation you write 1 to 50, 50 and here we have 50 and

here we have 50. So, that will give you the a 50 it is an approximation of the rank 50. 

Now, again let us see, but before that we have to 5 figure 3 here and then we write it

image 50 here and see what you will get. So, if you look at the figure this represent the

approximation  of  the  original  figure  by  using  the  first  50  singular  values  and  this

represent the approximation of the original figure by taking only say 20 singular values.

So, now, let us move to more accurate approximation. So, let us consider figure 3 and

figure 4 which represent say more accurate result. So, here this is again a blank screen.

Now, let us approximate using same 80 you can say or you can say that 80 let us say start

with 80 one. So, you take as 80, so we are approximating our image with the first 80

singular values. So, we are using outer product expansion up to say 80 values and we are

neglecting 102 singular values and see how you, so, now, let us screen it.



So, again it is 80 here when we look at the approximation by taking the first 80 singular

values and if you look at the image this will give you the original figure. And this is the

approximation of the original figure by taking first 20 singular values, and this is the

approximation of the original figure by taking the first 50 singular values, and if you

look at this is the approximation of the original figure by taking say 80 singular values.

Now, let us take one more approximation of this. So, let us take a figure 5 here and this is

a blank screen right. Now, let us consider 100. So, we are taking 100 now, so 1 to 100

and it is 1 to 100 and here it is 1 to 100, and then we screen it. And if you screen it and

here you will get, now, again I am reiterating this is the original figure this is the 20th

first 20th singular values and then it is 50, 80 and this is your 100.
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Now, if you look at this last figure 100 using the 100 first 100 singular values. And look

at the original  figure it  is almost say approximating the original figure.  So, here this

figure is the original figure and this is the figure we obtained using the first 100 singular

values of the matrix. And we can say that this figure 5 is quite good approximation of the

original figure, and here we have used only say first 100 singular values of the matrix.

And we have seen that we have 182 singular values for this particular image.



(Refer Slide Time: 15:31)

Now, if you look at the singular values diagram, so d represent the diagonal of S here and

that  will  give you the diagonal  entries  of S means the singular values on the matrix

jaguar 

Now, let us plot this d and see what you will get. And if you plot this you will get this

figure and it says that if you look at this plot or graph carefully then this represent the

number of singular values and here we have 182 singular value, so here we have this

182. And then these represent the modulus of or modulus value of the singular values.

So, if you look at the largest singular value somewhere here that it is between 2.5 to 3 to

3 into 10 to power 4. And if you look at the first 20 the first few your singular values are

quite large, but after say 20 it is somewhere between 0.5 to 0 into 10 to power 4, and if

we look at  and this  the  modulus  value  of  the  singular  values  is  going to  be  use in

decreasing order. And you can say that after say 100 or something it the contribution of

the singular values are almost nil, or you can say that the after say 100 and the singular

values are quite say negligible compared to all other singular values.

So, you can say that the first say up to 100 singular values carrying most say most data of

the file and that we have already seen that if we approximate our original figure that is

this, by say 100 you will get a good approximation of the original file. Though 20 is a

blurred version, but if you look at the 100 one it is say almost very a close version of this



and that is indicated here. That in this matrix jaguar we have say first few are very large

and rest of are all neglected compared to the largest singular values.

And we can say that you can take 100 or say 100 and 10 singular values to approximate

the  original  figure.  And  this  is  the  idea  where  we  can  utilize  this  singular  value

decomposition and outer product expansion of a matrix to image processing or image a

speech processing and so other, so many other applications.
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So, now, we stop this example and move on to next topic that is least square solution and

pseudo inverse, that how this singular value decomposition will help us to find out least

square solution, but before that let us understand what is this least square solution is. So,

if we start with the n cross n system of linear equation which we have we have already

discussed in many platforms and here it is A x equal to b where A is a n cross n a square

matrix and b is a n cross 1 vector in R n. 

And the system 2 this is the system 2 has a unique solution if and only if A has full rank.

So,  if  A has full  rank here we have a square matrix,  so A has  full  rank means a is

invertible. Then in this case we get a unique solution as x as A inverse b. So, in this case

when we have full rank we have a unique solution and it is given by A inverse b. 
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Now, consider the case when A is not a square matrix, but it is a rectangular matrix A m

cross n. So, we have a system of linear equation A x equal to b, where A is a m cross n

matrix and b is a vector in R n. 

Now, if m is a strictly bigger than n then system 3 is called over determined. In general

we can say that an over determined system has no solution why because if we look at this

is a what we have m equations and in n variables, where b is in R n. So, here we have x

is from n cross 1.  So,  we have unknowns are only n and we have more number of

equations. So, more number of equations and we have very less number of unknowns.

So, in general we this system may not have any solution at all. So, it means that there is

no x in R n such that A x equal to b or b minus A x is equal to say 0. Similarly in the case

when m is less than n then it means that we have less number of equation and we have

more  number  of  variables.  So,  in  that  particular  case  we may  not  have  any  unique

solution rather than we may have infinitely many solutions. So, in case of when m is

greater than n we may have the possibility that there is no solution at all, but if m is less

than  n  then  there  is  more  likely  that  this  solution  the  system has  a  infinitely  many

number of solution and we do not have any unique solution. 

So, in the case when we do not have exact solution we have seen that mm is greater than

n or m is less than n there is a possibility that we have no solution or infinitely many

solution or you can say that we do not have any exact solution. Then we hunt for the



approximate solution and from the residual r x as b minus a x we want to see that how

this b minus A x is differ from 0. So, look at the residual, residual we are obtained by

writing b minus A x and we want to show that this r x should be a very small. So, we

want to find out a vector in R n for which this norm of the quantity r x is minimum, and

if we are able to find out a vector like this then we say that it is the solution in the sense

of minimum minimum least square solution. 
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So, here let me define it whether here. So, we define a vector x that minimizes the r x in

2 norm is called a least square solution to the system 3. And the least square solution x

which has minimum 2 norm is called the minimum norm least square solution.

So, first thing we define as least square solution. So, least square solution means which

minimizes the residual in 2 norm, and among all the solutions which minimizes the least

residual r x in 2 norm and having minimum 2 norm is called the minimum norm least

square least square solution. That is if we have any other least square solution to the

system A x equal to b then we must have 2 norm of x is less than or equal 2 norm of z. In

this  case we say that x is known as minimum 2 norm least  square solutions and we

wanted to show that the minimum norm least square solution of the system 3 is given by

x equal to A dagger b. Now, what is this A dagger? A dagger is known as the pseudo

inverse of A. 



Now, how we define A dagger and what are the properties of A dagger that we are going

to  study.  So,  our  aim  of  studying  this  system  is  that  how  this  singular  value

decomposition is going to help to find out the minimum norm least square solution of the

system A x equal to b and that can be given as x as A dagger b, where A dagger is pseudo

inverse. So, we will take the help of singular value decomposition to find out the pseudo

inverse of the matrix A. 
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So, now, we wanted to know what is this A dagger is. So, we define A dagger as Moore-

Penrose inverse of the matrix A,. And we define it like this that let A be any real m cross

n matrix the pseudo inverse of A is an n cross m matrix A and it satisfy the following

Moore-Penrose condition that is AXA equal to A, and XAX is equal to X and AX is

symmetric  and it  means that  AX transpose is  same as  AX and similarly  XA is  also

symmetric. So, XA transpose is equal to XA. 

So, this definition is not a very constructive definition, but you can say that any matrix

which satisfy these 4 condition  we can call  that  as Moore,  as pseudo inverse of the

matrix A. And we will see that once a matrix b satisfy all these 4 properties then that

matrix is called as pseudo inverse of A. And you will see that pseudo inverse is going to

be unique, so we can call that matrix as the pseudo inverse of the matrix A. 



So, I will stop here and in next lecture we will see the properties of pseudo inverse of A

and how this is going to be helpful in finding the minimum norm least square solution of

the system A x equal to b. So, thank you for listening us.

Thank you.


