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Singular value decomposition of a matrix- I

Hello friends, welcome to this lecture, in this lecture we will discuss the very important

tool in numerical linear algebra that is singular value decomposition and this here, after

we call  this  singular  value  decomposition  as  SVD. And this  SVD has  a  lot  of  very

important application in various field of engineering and sciences. For example, we need

it and control theory, image processing and several other field. So, let us start, what do

you mean by singular value decomposition?
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So, this singular value decomposition can be used as an effective tool in handling several

computationally sensitive computation such as, rank and rank deficiency of a matrix.

Sometimes it may happen that, your matrix which we are handling is having very is ill

conditioned or we can say that, the lowest eigen value of a given matrix is very, very

small. So, it may create problem in handling many of the calculation using this matrix

and second is that, nearness of a matrix from an immediate lower rank matrix or you can

say that, approximation of a matrix with an immediate lower rank matrix.



So, there this  SVD is very, very useful and then,  finding orthonormal bases for row

space,  column  space  and  they  are  orthogonal  complement  subspaces  and  respective

orthogonal projection. So, calculating this orthonormal bases and orthogonal projection

we use SVD and also we use SVD in solving the least square problems, that all these all

these problems we will discuss in coming lectures. So, let us first start what do you mean

by SVD?
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So, so here, let A be a real m cross n matrix with m greater than or equal to n, then they

exist an m cross m orthogonal matrix U and n cross n orthogonal matrix V such that, U

transverse AV equal to S1 0 equal to S here, 0 is a matrix of appropriate size and we call

this S1 0 as S where, we say that, it is a diagonal rectangular matrix of order m cross n

and S1 we are denoting as this diagonal matrix whose, diagonal elements are sigma 1 to

sigma n is a nonsingular matrix.

So, the diagonal element of S1 are all nonnegative and they can be arranged in a way

such that, sigma 1 is greater than sigma 2 and it is greater than equal to sigma n greater

than equal to 0 see the number of nonzero diagonal elements of S1 equals the rank of A.

So, here we want to get this kind of theorem first of all and if you look at look at this

representation U transpose AV equal to S if you remember that, if A is a square matrix

and if A is a diagonalizable matrix, then we can have this kind of matrix P transverse AP

equal to some D matrix, but what happen if this matrix A is not diagonalizable then, we



can utilize this SVD theorem to your nearly diagonalizable near nearly you can say that,

U transverse AV is a nearly diagonal  matrix or we can say that,  we have a diagonal

rectangular matrix and we will see that, why this form is very, very important? And how

to find out this capital U and capital V?

(Refer Slide Time: 04:14)

So, let us prove this theorem1. So, here consider the n cross n square matrix A transverse

A now, since A is a n cross n matrix. So, A transverse A is we can define a n this is

coming  out  to  be  symmetric  and  positive  semi  definite.  So,  it  means  that,  it  is

eigenvalues are all non-negative. So, let us calculate all the eigenvalues of A transverse A

call  these eigenvalues as sigma 1 square and sigma n square and we are denoting as

lambda 1 as sigma 1 square, lambda 2 as sigma 2 square, lambda n as sigma n square and

here, let us assume that, rank of A is some r where, R may be less than or equal to n and

we already know that, rank of A is same as rank of A transverse A. 

So, it means that a transverse A has a nonzero eigenvalues. So, it means that, out of these

n eigenvalues only r eigenvalues are non 0 rest of all 0 0 eigen value. So, without any

loss of generality  we may assume that,  the eigenvalues  of A transverse A have been

ordered in a way. So, what we try to do we try to order them order the eigenvalues of A

transverse A and in a way such that, sigma 1 square is the largest eigen value and sigma r

r square is the smallest eigen value and rest are all is n minus r eigenvalues are 0 eigen

values.



Now, here we also know that, since A transverse A is a symmetric matrix. So, it means

that, A transverse A is orthogonally diagonalizable matrix. So, it means that, we they

exist  a  n  cross  n orthogonal  matrix  V such that,  V transverse  A transverse  AV is  a

diagonal matrix.
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So, here diagonal matrix consist the eigenvalues of A transverse A here. So, here now, we

can say that this V we can write as V1 to Vn where, V1 to Vn are eigen vectors of A

transverse  A.  Now,  then  the  columns  V1  to  Vn  of  Vr  orthogonal  eigenvectors

corresponding to the eigenvalue sigma 1 square, sigma 2 square and sigma n square of A

transverse A. So, this information we have got because, A transverse A is a symmetric

real matrix. So, we can orthogonally ortho normally diagnose this A transverse A with

the help of the matrix V here, V contain the orthonormal eigenvector corresponding to A

transverse A.
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So now, let us write this V as V1 and V2 where, V1 consist of first r eigenvectors. So, V1

is a matrix consisting first r eigen first r columns of V and V2 consist of the remaining n

minus r columns of V.

So, we can calculate that, V2 transverse A transverse A V2, which we can say that, it is

nothing but A transverse A operating on V2. So, if you look at A transverse A operating

on V2 means, A transverse A operating on Vr plus 1 to Vn. Now, this Vr plus 1 to Vn are

the eigenvector corresponding to sigma r square sigma r plus 1 square, sigma r plus 2

whole square and sigma n square. Now, these are the eigenvector corresponding to 0

eigenvalue. So, it means that, A transverse A V2 is going to be 0. 

So, it means that, A transverse A V2 is a 0 matrix 0 comma 0 comma 0 n minus r 0 are

here. So, if you apply V2 transverse on this 0 matrix you will get a 0. So, it means V2

transverse A transverse A V2 is  coming out  to be 0,  which we can written as A V2

transverse A V2 equal to 0 and here, we can say that from this we can verify that x

transverse A V2 transverse A V2 x is equal to A V2 x transverse A V2 x and this is

coming out to be norm of A V2 x whole square and it is coming out to be 0 because, of

this equation number 3. 

So, this is true for every x in Rm. So, in particular we can say that, AV2 x is equal to 0

because, if norm of any vector is 0. So, it means that that vector is nothing but a 0 vector.

So, it means that AV2 x is equal to 0 for every x in Rm.



So, in particular we can take x as standard basis of Rm and we can show that, A V2 is a 0

matrix. So, or you can say that, A V2 is equal to 0 means AV i is equal to 0 where, i is

running from r plus 1 to n. So, it means that AV i is equal to 0 for i equal to r plus 1 to n.

So now, what we have done here, we are almost able to find out our V now, we try to

find out the matrix U for that,  we define Z by sigma 1 to A diagonal matrix  whose

diagonal elements are sigma 1 to sigma r.

(Refer Slide Time: 09:23)

So, these are all nonzero eigen square root of eigenvalues of A transverse A. So, we can

say that, Z is clearly a nonsingular matrix. So, from we can say that, let us calculate V1

transverse A transverse A V1. So, if you look at what is V1 here, V1 is is a matrix of

consisting the first r column of V and these are eigenvectors corresponding to sigma 1

square, sigma 2 square and sigma r square. So, using this information we can say that, A

transverse A V1 is basically sigma 1 square, V1 sigma 2 square, V2 and sigma r square

V2 and when we apply V1 transverse it  is  coming out to be A diagonal  matrix  and

whose, diagonal elements are sigma 1 square, sigma 2 square up to sigma r square.

And if you want to write this in terms of Z then, we can say that it is nothing but Z

square. So, using this representation we can further simplify this and we can say that,

applying Z inverse from the left-hand side and the right-hand side we can say that, this

can be re written as Z inverse V1 transverse A transverse A V1Z inverse equal to i. So, let



us if you look at this is a kind of this can be utilized as finding the matrix U. So, here we

call this matrix A V1Z inverse as U. So, if you call this a V1Z inverse as U 1.
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So, we define we define n m cross r matrix U 1 by U1 equal to AV1Z inverse. So, if you

look at if we take this as U1 then, this is nothing but U1 transverse into U1 equal to i we

simply say that that, U1 is an is an orthogonal matrix or we can say that U1 transverse

U1is basically i or we can say that U1, U 2, U r are orthonormal vectors in Rm. So,

columns of U1 forms an orthonormal say orthonormal set in R f Rm

So, what we have found here, is the matrix of size m cross r U1 such that, U1 transverse

U1 is equal to i we can say that, columns of U1 matrix which is which are U1 to U r are

orthonormal vectors in Rm or if we look at we can from this U1 if you look at this from

here, we can say that U1, U i is nothing but 1 upon sigma i A of V i. So, here if you look

at what is V1, V1is basically consisting of V1 to Vr eigenvectors corresponding to A

transverse A. So, here we can simplify this equation number 6 and we can write it U i

equal to 1 upon sigma i A of V i for i equal to 1 to r. 

So, here we have started we have defined this capital U1 with the help of matrix Z, but if

you directly if you can you can directly define your U1 from this from the matrix V1 and

we can say that U1 is nothing but 1 upon sigma i A of V i where, i is running from 1 to r.

So, we can start defining our matrix U1 from this point also, but anyway this is quite

convenient if you define your U1 in terms of Z. So, here U i is 1 upon sigma i A of V i



for i equal to 1 to r. Now, if you look at if you form the set using these U i. So, we have a

set B 1 consisting r vectors defined as equation number 7 and we say that, this B1 forms

an orthonormal basis for the subspace R of A of Rm.

Now, for that please observe that these U1to U r are all orthonormal vectors in Rm. So, it

means that, if we can prove that range space of A is having a dimension r then we can

say that, B1 is an orthonormal basis for this subspace R of A where, R of A denotes the

range or column space of A.
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So, here we can say that, B1 is subset of R of A, why B 1 is subset of R of A? Because, if

you look at the equation number 7, 7 says that U i is nothing but 1 upon sigma i A of V i.

So, here this implies that, this U i belongs to the range space of matrix A. So, it means

that, all this U1to U r belongs to the range space of A. So, we have seen that B1 consist

of r orthonormal vectors. So, since A has rank r it means subspace R A has dimension of

r, why? because, range space of A is basically nothing but column space of A. Now, the

column space of A has dimension n. 

So, it means that range space of A has dimension r. Now, since A has rank r the subspace

RA has dimension r and we can say that, B1 is basically a linearly independent because,

it is orthonormal set of vector. So, we can say that, B1 is a linearly independent set of

vectors whose, dimension is basically r.



So, we can say that, this B1 generate A subspace of dimension r and range space of A has

dimension r. So, it means that, B1 generate the range space of A or we can say that, B1 is

an orthonormal bases for this range space of A. Now, we already know that, Rm can be

written has range space of A null space null space of A transverse and. So, here we can

say that, what is null space of A transverse? Null space of A transverse denote the null

space of A transverse.

Now, we can say that by (Refer Time: 16:12) theorem here, the null space of A transverse

(Refer Time: 16:15) has dimension m minus r. So now, we can do here, we have the basis

for this range space of A now, and we want to find out say basis for Rm. So, we can

extend the basis of range space of A to the basis of Rm and we can find out the vectors

Ur  plus  1  to  Um and we if  we ortho  normalize  it  using  gram (Refer  Time:  16:42)

organization process. So, we can say that, we can easily find an orthonormal basis B2 for

the subspace of null space of A transverse of Rm.

So here, with the help of this orthonormal basis, which is the orthonormal basis of null

space  of  A transverse  we can  define  the  matrix  U2consisting  of  these  n  m minus  r

column vectors, and we write U2as U r plus 1, U r plus 2 and U m. And with U1 and

U2we can define an m cross m matrix U by U is equal to U1 comma U2. So, it means

that the first r columns are coming from U1 and the remaining m minus r columns are

coming from U 2. So, we claim that, this U is the desired matrix m.
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So, here with this U we simply say that, since the columns of U forms an orthonormal

basis of Rm. So, we can say that, these columns of U1 and columns of U2 are basically

orthogonal to each other and we say that, this U forms an orthonormal matrix of size m

cross m. So, we want to calculate this U transverse AV. So, writing the expression for U

transverse it is nothing but, U1 transverse, U2 transverse, A and V can be written as V1

and V2. So, when you simplify it is coming out to be this block matrix and whose blocks

are  given  as  U1  transverse  AV1U1  transverse,  A V2  U2transverse,  A V1and  U2ah

transverse A V2.

So,  to  calculate  these  blocks  let  us  start  with  this  U1 transverse  AV1.  So,  here  U1

transverse  a  V1 is  what  using  the expression for  U1,  U1is  defined as  Z inverse V1

transverse A transverse A V1and if you look at this V1 transverse A transverse A V1 is

nothing but,  your  Z square  we have already defined this  as  here.  So,  here  we have

defined V1 transverse A transverse A V1 as Z square. So, using this expression we can

simply say that, Z inverse and this is your Z square. 

So, we can say that it is Z. So, the first block is coming out to be Z here. Now, now let us

we have already calculated that, this quantity A V2 is a 0-matrix for that, if you look at

here we here we have proved that, A of V2 is equal to 0. So, using this A V2 is a 0 matrix

we can say that,  U1 transverse AV2 is basically U1 transverse applying on 0 matrix,

which is coming out to be 0. So, this implies that, this block matrix is nothing but, a 0-

block matrix similarly we can calculate U2 transverse A V2 because here, also we can

say that since AV2 is a 0 matrix. So, operating U2 transverse on A V2 it is also coming

out to be 0 matrix.

So, we here we can say that, this is Z this is 0 this is 0. Now, let us calculate this quantity

U2 transverse A of V1.
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So, you look at U2 transverse AV1. So, here we are using the here, what is the expression

for U1? So, here A of V1 can be written as U1of Z, how we can write it? If you look at

the equation number 4 here. So, here we can say that here, equation number 6 basically

U1 is equal to A V1Z inverse. So, we can apply Z here. So, you can say that U1Z is equal

to AV1. So, using the expression 6 we can write the last here that, U2 transverse AV1 and

in  place  of  a  V1 we are  writing  U1Z and you can  say  that,  this  is  nothing  but  U2

transverse U1 now, U2 transverse U1 is basically 0, why? 

Because, the columns of U and columns of U1 are orthogonal to each other. So, here

because, of ortho gonalty of matrix U this is coming out to be 0 operating on Z and it is

coming out to be 0. So, U2 transverse A V1is also coming out to be 0. So, it means that

here, in equation number 8 this is coming out to be 0 because, of AV2 and this is coming

out 0 because, of a V2 and here we have utilized the equation number 6 that, A V1 is

equal to U1Z.

So, again we can say that, U transverse AV is coming out to be this matrix Z 0 0 where, Z

is basically diagonal matrix consisting the diagonal entries as sigma 1 to sigma r here,

and we call this block matrix as S and we say that, U transverse AV is S and we say that,

this  is the required thing we wanted to prove if you look at  what is the theorem we

wanted to prove? We wanted to have U transverse AV equal to S here, S is having this S1

comma 0 here, we have denoted this S1 as Z. So, Z is basically sigma 1 to sigma n here,



in this case our n is coming out to be r. So, here we have proved the that, A can be

decomposed as U transverse AV equal to S. Now, with the help of this decomposition we

can find out we can define, what is singular value decomposition?
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 So,  let  A be  any  real  m  cross  n  matrix  with  m  is  greater  than  or  equal  to  n  the

decomposition A, which is given as USV transverse. So, we have U transverse AV equal

to S and since, U and V are orthogonal matrix we can write this as a as USV transverse

which is we are writing here.

So, it means that where, U, S and V are same as mentioned in the above theorem is

called  a  singular  value  decomposition  of  A.  So,  it  means  that,  A written  as  USV

transverse is known as singular value decomposition of A here, and the diagonal element

of the matrix S1 namely sigma 1 to sigma n are called the singular values of A. The

column vectors of U are called the left singular vectors and those of V are called the right

singular vectors of A. 

So, here we also define what is left singular vectors and right singular vectors of A. So,

you can say column vectors of U are left singular vectors and columns of V are known as

right singular vector vectors of A. We will try to see why we call this as left singular

vectors or right singular vectors and because, of this thing that sigma 1 to sigma n are

called singular values of A we say that, this decomposition of A is known as singular

value decomposition of A.
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Now, remark 1. So, here we say that we have given the theorem for any real matrix m

cross n where, m is greater than or equal to n, but what happen that if we have A matrix

A of the size m cross n and m is strictly less than n. So, in this case, how we can say that

how we can obtain the SVD.

So, if you look at in this case when A is any real m cross n matrix with m is less than n

we can say that, SVD of A is defined by SVD of A transverse. Now, what is a transverse?

So, if you define A transverse A transverse is of size n cross m and n is greater than equal

to m. So, for this our theorem will be applied and we can find out U tilde and V tilde

orthogonal  matrixes  of  appropriate  size  such  that,  U  tilde  transverse  A tilde  AT A

transverse V1 V tilde T can be written as S tilde where, S tilde is S1 tilde 0 where, S S1

tilde is the diagonal matrix consisting the singular values sigma 1 to sigma n thus, the

SVD of A transverse is given by A transverse equal to U tilde S tilde V tilde transverse. 

Now here, we can apply the transverse of this whole expression and we can say that, if

you take the transverse of the whole expression what will have we define U as V tilde S

as S tilde transverse and V as U tilde transverse and from this we can say that, taking the

transverse of the whole expression we can say that, A can be written as USV transverse

where, U is V tilde, S as S tilde transverse and VT V transverse is nothing but U tilde

transverse and here, S is what S is given by this matrix S1 comma S1 0.



So, it means that whether it is a any m cross n matrix whether, m is greater than or equal

to n or m is less than n we can always find out the singular value decomposition of a

matrix A. So, without loss of generality we can always find out SVD by assuming that,

your number of rows are bigger than number of columns here.
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So now, let us consider this remark 2, remark 2 says that let a is any real m cross n

matrix with m greater than equal to n and if a has rank r then A has r positive singular

values denoted by sigma 1 to sigma r and here, if you remember we have we are able to

find out this matrix U consisting m orthonormal vectors and we can say that here, U is an

m cross m orthogonal matrix, which we are defined as left singular values of lift left

singular left eigenvectors of A namely U1 to Um. And this will form an orthonormal

basis for Rm similarly, V is an n cross n orthogonal matrix and we call this as right

singular vectors of A and which are namely V1 to Vn and this will form an orthonormal

basis of Rn.

So, what we have is that, if we have a singular value decomposition of A as U as V

transverse then, columns of U will form a orthonormal basis for Rm and columns of V

will form an orthonormal basis for Rn. So, with the help of SVD we can find out say

orthonormal basis for domain space and codomain space now, coming out to coming to

remark 3. So, here let A is any real m cross n matrix with m greater than equal to n, the

singular values of A r the nonnegative square roots of the eigenvalues of A transverse A



in non-increasing order. So, we can say that singular values are going to be unique, but

the singular vectors of a may not be unique the we can say like this, that if you look at A

transverse A and since it is symmetric non semi definite matrix we can say that, if in the

case of repeated eigenvalues then, the corresponding eigenvectors can be taken as any

linearly independent vectors which can spend the eigenspace.

So, here basis since basis of any vector space is not unique. So, we can say that basis

spanning the eigenspace is also not unique and we can say that your V matrix is not

unique and we can say that, the singular vectors of a may not be unique because, U is

very much related to capital U is very much related to V. So, here we can say that this

singular vectors of a may not be unique. So, it means that singular values are unique, but

not the singular vectors.
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So now, let us coming out to be remark 4, which discuss the geometric interpretation of

the S singular value decomposition theorem and it says that, given any real m cross n

matrix A with m greater than equal to n it is by default we are assuming all the time

consider the associated linear mapping TA, which is map which map from Rn to Rm and

is defined as y equal to Tax, which is given as A of x where, A represent the matrix

representation of this linear mapping T of A and we can choose an orthonormal basis for

R n and it is what it is namely the columns of V and an orthonormal basis for Rm again it

is the columns of U we can use we can choose the columns of U such that,  T of A



diagonal in the new coordinates, that implies what that if you take any vector in R n ah,

which can be written as i equal to 1 to n beta i V i.

Then our claim is that, it is image is going to be y, which is which has representation i

equal to 1 to n sigma i beta i U i and if you look at how we are here that, if you operate

your A on this x then, A of x is going to be what i equal to 1 to n beta i A of V i now,

what is A of V i? A of V i is given as sigma i U i and this is how we define our U i. So,

we  say  that  in  other  words  any  matrix  A  is  diagonal  if  we  choose  appropriate

orthonormal basis for the domain and range of the associated linear mapping T of A. So,

earlier this representation is we know in terms of diagonalizable square matrix, but with

the help of this singular value decomposition theorem, we can extend the similar kind of

notation for any rectangular matrix of size m cross n. So, here I will stop this discussion. 

So, in today’s lecture what we have done we have done we have found the singular value

decomposition of any real m cross n matrix where, m is greater than equal to n and we

have seen how to find out the component of the singular value decomposition, that is

how to find out capital U and how to find out capital V and how to find out the singular

values of S, and will end here this discussion.

In next lecture we will try to take some example and try to find out how we can find out

this U S and V. So, thank you for listening us we will meet in a next lecture.

Thank you.


