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Residual Theorem

Hello friends, welcome to my lecture on residual theorem.
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Let x be the solution vector or you can say exact solution of the linear system A x equal

to b. Now if you choses slightly different a right hand sent side vector b cap, then we

obtain a different solution vector say x cap satisfying A x cap equal to b cap. Our aim is

to know how the relative error norm of v cap minus b over norm of b inferences the

relative  error,  norm  of  x  cap  minus  x  over  norm  of  x.  So,  when  there  is  a  slight

perturbation in the right hand side vector b, instead of the b b considered b cap, then

corresponding 2 x there will be another solution vector x cap satisfying the equation x

cap equal to b cap. So, our aim is to know how the relative error in b actually affects the

a relative error in x ok.

So, we have A x equal to b which and A x cap equal to b cap.
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So, we will have A times x minus x cap equal to b minus b cap or a times x cap minus x

equal to b cap minus b. And therefore, norm of. So, or I can write it as x cap minus x

equal to A inverse b cap minus b and this implies that norm of x cap minus x which is

equal to norm of A inverse b cap minus b and this implies that norm of x cap minus x

which is equal to norm of A inverse, b cap minus b since this norm is subordinate matrix

norm I can write it as less than or equal to norm of A inverse into norm of b cap minus b.

So, again we have A x equal to b since A x equal to b. So, norm of b which is equal to

norm of A x, and norm A x less than or equal to norm of A into norm of x. So, we have



this again by using the fact that, we have subordinate matrix norm. So, this second in

inequality norm of b less than or equal to norm of A into norm of x gives you norm of x

greater than or equal to norm of b over norm of A.
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So, now from here we can say norm of x cap over norm of x, hence norm of x cap minus

x norm of x over norm of x is less than or equal to norm of A inverse into norm of b cap

minus b, divided by norm of b into norm of A. So, this is what we have, this is norm of A

we will come here now we know that for any norm k is the condition number of a is

equal to norm of A into norm of A inverse we will have, k A times norm of b cap minus b

divided by norm of b where k denotes the condition number of A. So, we can see that the

relative error in x is less than or equal to condition number of A into relative error in b.

Now let us again notice that norm of b cap minus b is less than or equal to norm of b cap

minus b from this equation. From this equation norm of b cap minus b is less than or

equal to norm of A into norm of x cap minus x again using the property of matrix norm

and x is equal to A inverse b because A x is equal to b. So, norm of x is less than or equal

to norm of A inverse into norm of b.
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And therefore, a we can multiply the tool equalities and we get norm of b minus b cap

into norm of x less than or equal to norm of A into norm of A inverse, into norm of x cap

minus x into norm of b again k A equal to norm of A into norm of A inverse. So, we get k

A times norm of x cap minus x into norm of b. And dividing by k A because we know

that remember we know that k A is always greater than or equal to 1; see for any matrice

subordinate matrix norm we know that, k A is greater than or equal to 1 the condition

number of a greater than equal to why because we know that we have A into A inverse

equal to identity matrix. So, norm of A into A inverse is equal to norm of I and norm of I

we know is equal to 1. p norm of I is equal to 1 and since the we have the subordinate

matrix norm.

So, norm of A A inverse is less than or equal to norm of A into norm of A inverse by

definition condition number of A is norm of A into norm of inverse and this is norm of I

norm of I is equal to 1. So, one is less than or equal to condition number of A. So,

condition number of A is always greater than or equal to 1 and therefore, we can divide

by k here when we divide by k we get 1 over k norm of b cap minus b upon norm of b

less than or equal to norm of x cap minus x divided by norm of x. And now we combine

this inequality which is number 3 to with the inequality which is number 2, which we

proved earlier and we get one over k A into norm of b cap minus b divided by norm of b

less than or equal to norm of x cap minus x divided by norm of norm x, less than or equal

to  k A times  norm of  b cap  minus b dived by norm b.  Now let  us  see look at  the



inequality and see other what it means; we have proved that norm of x cap minus x that

is relative error in x is less than or equal to condition number of A into relative error in b.
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So, the condition number here plays a significant role in getting the relative error in x

now.
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So, actually we have prove the following theorem; what we have proved is we consider

any linear system A x equal to b, where A is any real nonsingular n by n matrix, and we



took b to be any nonzero vector in r n, x cap we considered as an approximate solution to

A x equal to b, where r is equal to b minus A x cap we took A x cap equal to b cap.

So, let us say r is equal to b minus b cap b the residual denote the residual, than norm of

x minus x cap be proved that it is less than or equal to norm of A inverse into norm of b

minus b cap. And we further showed that one over k A times norm of r that is norm of b

minus b cap over norm of b less than or equal to norm of x cap minus x upon norm of x,

less than or equal to k A times norm of r into y norm of b cap minus b divided by norm

of b where norm is any subordinate matrix norm. So, this is what we have proved is

actually the residual theorem. So, now, and this r which is b minus b cap is actually

called the residual.

So, now we let us see the condition number of the matrix A determines how much the

relative error on the right hand side vector can be amplified.
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Because right hand side the relative error in b is multiplied by k A. So, this k A decides

how much it will be amplified its value actually tells us, how much the right hand side is

going to be amplified. The condition number depends on the choice of the matrix norm

in general we denote k 1 a 1 norm in a one in one norm k infinity writer for infinity

norm, and they are different numbers in. From the residual theorem it turns out that the

relative  error  in  the  computed  solution  x  depends  not  only  on  the  residual  relative

residual norm of b cap minus b divided by norm of b.



But also on the condition number of a that is k, if k is large then x cap need not be a good

approximation for x even if the relative residual is a small.
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Let us look at an example on this suppose we consider the matrix A equal to 1.01, 0.99,

0.99, 1.01 which is 2 by 2 matrix, then the inverse of this matrix is 25.25 minus 24.75

minus 24.75, 25.25.Here we are finding the condition number in the infinity norm. So,

condition  number in  the  infinity  norm is  norm of  A infinity  into norm of  A inverse

infinity because finding condition number in the 2 norm is difficult. So, here we have

considered infinity norm. So, norm of A infinity into norm of A inverse infinity;  and

norm of A infinity is equal to maximum absolute row sum in the matrix A. 

If you look at the matrix a the absolutely row sum in the first row 25.25 plus 24.75 which

is equal to 50 and in the next row the absolute row sum is 24.75 plus 25.25. So, absolute

row sum is equal to 50. So, in both rows the absolute row sum is 50 and therefore, the

maximum is 50.

So, this is equal to 50 and this is equal to a norm of A inverse, because this is what I was

talking about the inverse matrix a inverse. So, norm of A inverse infinity A is equal to 50

of the matrix A inverse in the case of A in the case of a similarly the maximum absolute

row sum is 2, because 1.11 plus 0.99 is 2 and in the second row also 0.99 plus 0.01 is 2.

So, norm of A infinity is equal to 2 and so, the condition number in the infinity norm of

the matrix A is 50 into 2. So, we get 100 ok.



So, we have we got the condition number in the infinity norm, let us consider the system

norm A x equal to b where a is the 2 by 2 matrix which we have considered, and b and let

us take to b 2 2. Then A is 1.09 and 0.99 and here we have 991.01 this is our this is our x

A matrix . So, A x equal to b, where b is b is 2 it means that x is equal to 11 we can easily

see that x is equal 11 here which is the exact solution. 
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Slightly different right hand side vector, let us take a slight perturbation matrix b cap

equal to 2.02 and 1.98 should be kept we have taking to be equal to now let us consider

again the A x cap equal to b cap ok.

So, we have 1.09, 0.999 and here we have 0.99 and 1.01 into x cap is equal to 2.02 and

1.98. So, here we get x cap to be equal to 1.01 So, you can see that here x cap is equal to

2 0 vector. So, when we make a slight change in the right hand side vector b, there is a

drastic change in the vector x earlier vector x was 11.

Now, the vector new vector x is 2 0. So, there is a small change when there is small

change in the right hand side, it has caused a large change in the solution vector and this

is because the condition number is large the condition number is 1000. So, it has played a

significant  role  in  in  the  in  amplifying  the  error  in  the  solution  vector  thus  a  small

residual.
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R equal to b minus b cap, which is minus 0.02 and 0.02does not guarantee that x cap will

be a good approximation for the exact solution.
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Now let us consider next linear system another example these are where A is again 2 by 2

matrix, 4.99,99 5.001, 5.0001 4.9999 and b is equal to 10 by 10 ,then you can see here

that x is equal to one, one when we take A x equal to 1. 
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So, A is 4.999, 5.0001 and then we have here 5. 00010, 4.999 and here we have x and

here we have 10 10; some of these 2 is 10, and sum of these 2 is also 10. So, we can see

that x is equal to 11. So, we can easily find the solution vector here, now let us b cap we

take to be 9.998 and 10.0002, then the residual r equal to b minus b cap which is 0.0002

minus 0.0002, which is again a small and we can see that if you take this instead of 10 10

you take now 9.9998
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10.002 set off this we take this x then x cap let me write here x cap. So, this is now a b

cap than x cap is equal to 2 0 So, we can see that when there is a small change in the

right hand side vector b, there is a drastic change in the solution vector x earlier it was

11.

Now, it is 2 0 and which is not close to the exact solution x.
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So,  in  this  example  we  have  seen  that  small  residual  did  not  guarantee  a  good

approximate solution x cap. Here if we find condition number in 2 norm k 2 a then k 2 a

turns out to be 5 into 10 to the power 4 which is large. So, again the condition number

has played a role in the relative error in oxidative error in x is not a small, even if the

relative error in the solution when the right hand side vector b is small. 

So, the fact that the matrices now here we notice one more thing the matrices that we

have considered in the examples 1 and 2 both of them have large condition numbers; in

the first case be found in condition number in the infinity norm it was 100, in the second

case be found the condition number in condition number in the case of and 2 norm it

came out 5 into 10 to the power 4. So, which are which is again large.
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So, this large condition numbers is related to the fact that they are close to the singular

matrices actually condition number; actually is very important to see whether a given

non-singular matrix is close to a singular matrix.

So, if condition number is less than the larger the condition number, the closer is the non-

singular matrix to the singular matrix. This we shall be seeing in our next lecture when

we discuss nearness to singularity. So, the condition number in the 2 matrices which we

consider is large, is related to the fact that they are close to the singular matrices 11 11

and 5 5 5 5 thus condition number gives an indication actually how close is a given

matrix non singular matrix A from a singular matrix.

To this, we are going to see when we discuss the next in the next lecture the nearness to

similarity. The condition number plays a significant role in deciding whether a given non

singular matrix is close to a singular matrix. So, with that I would like to conclude my

lecture.

Thank you very much for your attention.


