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Hello friends, welcome to our lecture.  In a previous lecture we have discussed some

properties of vector norm and in this lecture we extend our discussion and discuss some

properties based on vector norms and with the help of vector norms we try to define what

is matrix norm here. So, in previous lecture we have defined norm like this.
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So, here we have vector space v on real scalar say R and this norm function is defined as

a function from V to say R we satisfy the following property that norm of x is greater

than equal to 0 here and norm of x is equal to 0 if and only if x is equal to 0. And b

property is that alpha norm of alpha x is equal to modulus of alpha norm of x here for

every x belongs to V and alpha belongs to scalar field F here, F is equal to R here right.

And c property which is known as triangle inequality property, so norm of x plus y is less

than equal to norm of x plus norm of y for all x comma y belongs to v here.

So, this is what we define as norm here and in previous class we have shown that and on

R n we can define several norms which is known as one norm. So, we can say l 1 norm

and 2 norm l 2 norm and then infinity norm and we have also defined p norm for p



greater than or equal to 1 and we have seen that on R n each one of these norms are

equivalent to each other. And in today’s lecture we want to show that in terms of norm

how we define that convergence of vectors. So, it means that here we want to show that

if we have a sequence say x n, or say x k in R n then what do we mean by saying limit k

tending to infinity this x k will is equal to what. So, how we can define this limiting

criteria?
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So,  for  that  we define  convergence  in  this  way. A sequence  x  k  of  vectors  in  R  n

converges to a vector x in R n with respect to a norm if limit getting into infinity norm of

x k minus x is equal to 0 here.

Now, one important result here that a vector sequence x k converges to a vector x in R n

if  and only if  limit  k  tending to  infinity  x k j  is  equal  to  x j,  here x k j  is  the  jth

component of x k and x j is the gth component of x. So, what we want to prove here that

if x k which is this, this is a sequence in R n sequence of vectors in R n and here we

define that limit  k tending to infinity x k converges to x in norm means that limit  k

tending to infinity norm of x k minus x is equal to 0 here.
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And  what  we  want  to  prove  here  that  this  implies  that  that  component  wise  this

converges.  So,  it  means  that  if  we  look  at  the  jth  component  of  each  x  k.  So,  jth

component of x k will converge to jth component of the limit vector that is x here. So,

this we wanted to prove here.

So, for that we try to see here that this convergence criteria is independent of norms in R

n, we are talking about R n. So, in R n whatever norm will we want to take we can take

and that follows from the equivalent, equivalency of any norms in R n, we have seen that

if we take any 2 norms say m and n then it is equivalent. So, it means that they exist

alpha beta nonzero, in fact, positive that alpha M x less than or equal to N x less than or

equal to beta times M of x. So, here this x k minus x can be written as alpha M x k minus

x less than or equal to N x k minus x less than or equal to beta M x k minus x. 

So, if this x k converges to x in M norm. So, it means that if M x k minus x is tending to

0 if this value is equal to 0. So, by sandwich theorem we can say that n times x k minus x

is also equal to 0. So, here M and N are any 2 arbitrary norm defined on R n. So, it

means that if this convergence is in with respect to 1 norm then this shows that converges

in any other norms.

So, let us say that take the norm n as infinity norm. So, let us define that n x is infinity

norm. So, n x is defined as infinite norm of x and then since x k converges to x in any

norm, in particular in infinity norm also. So, it means that 0 equal to limit k tending to



infinity, infinity  norm of x k minus x that is simply says that x k converges to x in

infinity norm.

Now, by the definition of infinity norm it is what? It is nothing, but maximum of x k J

minus x J and J is between 1 to n and this is equal to what this is equal to 0. So, it means

that maximum maximum x, x k J minus x J, where J is between 1 to n is equal to 0. Now

this is possible only when each term is equal to 0. So, it means that for each J from 1 to n

x k J is converging to x J. So, it means that this I can write as limit k tending to infinity x

k J is equal to x J. Here I have missed one thing here this as limit k tending to infinity.

So, here this follows only when. 

So, this is true only when limit k tending to infinity x k J minus x J is equal to 0 for each

name and this implies that limit k tending to infinity x k J is equal to x J for each J here,

right. So, this show that if x k converges to x in norm in R n then it this implies that that

component wise also convergence follows. So, it means that jth component of x k will

converge to jth component of the limit factor.
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So, using this move to example number 3 here. Here we consider the sequence x k where

x is given by k plus 1 divided by k comma e to power minus k sine k comma one by k.

So, this is a sequence in R 3 and we want to find out say the limit vector of x k in R 3.



So, if you look at we have seen that if x k converges to sum x then component wise

convergence follows. So, it means that this first component if you find out say limit, limit

k tending to infinity k plus one divided by k will converge to 1, second component e to

power minus k sine k will converge to 0 and last one by k will converge to 0. So, it

means that this, this will converge to 1, this will converge to 0, this will converge to 0.

So, it means that x k will converge to a limit vector whose first component is 1, second

component is 0, last component is 0. So, it means that x k converges to vector 1 0 0 in R

3. And this convergence is happening in any vector norm. So, that is one nice application

of the definition, nice application of this theorem 2.

Now, move on to next, next let us define what is a matrix norm. So, to define matrix now

we try to recall that set of all m cross n matrix which is a vector space of all real m cross

n matrices this can be identified with the Euclidean space are m cross and let us see how

it is.
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So,  here  we can  say that  set  of  all  m cross  n matrix  over  R can  be identified  with

elements of R to power m n.
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So, how we are identifying here if you look at any matrix of size m cross and this can be

written as a column vector like this. So, what we are doing here we are writing the first

row as the column here and second row is next column here and so on. So, here basically

we writing here a 11 to a 1 here 1 n here, and then look at the second row, second row is

also written here like this and so row wise we are writing as a column. 

So, last is what a m1 to a m n is given by this. So, this can be written as a column vector

in R m n size. So, here corresponding to every matrix here we can write out write a

vector in R 2 power m n here. So, we already know how to define vector norm. So, it

means that with the help of definition of vector norm now we can define the matrix norm

here also. So, here we define matrix norm as follows.

So, a matrix a matrix norm on m m cross and the set of all real m cross n matrices is a

real valued function defined on this matrices A and B and all real numbers alpha we

satisfy the following 3 properties. First property is that norm of A is greater than or equal

to 0 and norm of A will be 0 only an if and only if A is equal to 0. And this property is

known as positive definiteness and second property is that norm of alpha A is equal to

modulus of alpha norm of A and this is known as a scaling identity here alpha is a scaling

factor here. See, says that norm of A plus B is less than or equal to norm of A plus norm

of B which is known as triangle inequality. So, first thing is what? We define this matrix

norm with the help of vector norms on R power m right.
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So, now let us define another norm which is known as subordinate matrix norm. So, how

we define it? Given a real m cross n matrix A and a vector norm v the non negative

number defined by this norm of A is equal to supremum of norm of x v divided by norm

of x and this supremum is taken over all those x belonging to R n which are nonzero. So,

if you take the supremum here then this supremum is known as v norm of A and we call

this norm is induced by vector norm of R n here.

So, we try to show that it satisfy all the properties of matrix norm and this norm is called

the matrix norm, subordinate to the vector norm or we can say that this norm is called as

matrix norm induced by vector norm v. And we can simplify this one we can rewrite this

form one in  the following 2 way. Here what  we have done here since this  is  just  a

constant vector. So, you can take it inside here. 

So, using this second property here scaling identity we can take norm of x into inside and

we can say that norm v norm of a is equal to supremum taken over all x nonzero vector

of R n and it is A divided A x of divided by norm of x. And if you look at this is what?

Here we can take that all those x whose v norm is 1 then this is nothing but supremum of

A norm of A x and this supremum is taken over all those x whose v norm is equal to 1.

So, either we use this form all these forms it is equivalent to each other.
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Now, as we have pointed out that this definition says that it is a matrix norm let us prove

this that the subordinate matrix norm defines above is a matrix norm. So, we have to

satisfy, we have to show that the subordinate matrix norm satisfy all the 3 properties. So,

let us prove the first properties.

First property says that your matrix norm is non-negative and it is equal to 0 only when

A is equal to 0. So, first non negativity is obvious because v norm of A is ratio of v norm

of x and v norm of x and if you look at this is a non negative since it is a vector norm in

m cross 1 R n basically and it is vector norm in R n. So, here this is non-negative, this is

non-negative by the property of vector norms and we can say that this v norm of A will

also be non negative.

Now, looking at  the second part  that  if  we norm of A is  equal  to 0 means that  that

supremum of this v norm of x divided by v norm of x is 0. So, supremum is 0, so it

means that this has to be numerator has to be 0 for all x in R n. So, v norm of x is equal

to 0 for every x in R n with x nonzero. So, this implies that since it is a vector norm. So,

this implies that A x has to be 0 for every x belongs to R n. So, here these 2 this implies

is or this implies this because this v is vector norm. So, this is A x equal to 0 for every x

belongs to R n. Now, A x equal to 0 means null space of A has dimension n or we can say

that nullity of A is equal to n. Now, we have already seen a rank nullity theorem for

linear the similar kind of result also follows for matrix.



So, if you use the line nullity theorem for matrix we can say that if nullity of A is equal to

n, then rank of A has to be equal to 0. So, rank of A equal to 0 if I and only if A is A 0

matrix,  it  means  that  what  we  have  shown here  that  if  v  norm of  A is  equal  to  0

subordinate matrix norm is equal to 0. So, this implies that matrix A is equal to 0. Now,

here each step is if and only if. So, we can say that both way it follows. So, subordinate

matrix norm is 0 implies, imply and implied by that A is equal to 0. So, this prove the

part A.
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Now, looking at the part b, that looking at the subordinate matrix norm of alpha A which

is nothing, but supremum of alpha norm of alpha x divided by norm of x and since it is a

vector norm. So, using the property of vector norm this can be written as modulus of

alpha and norm of A x and this is nothing, but subordinate matrix norm of A. So, we can

write it like this. So, this proves the part b.

Now, look at the part c. So, for that let us take 2 real matrices A and B of size m cross n

and try to find out say matrix about in a matrix norm of A plus B. So, which is defined as

supremum over all nonzero vector x norm of A plus B operating on x divided by v norm

of x here.

Now, here  this  can  be  simplified  as  triangle  inequality  of  vector  norm.  So,  triangle

inequality of vector norm says that A x plus B x is less than or equal to v norm of A x

plus v norm of B x. So, divided by v norm of x we can write it like this that subordinate



matrix norm is less than or equal to supremum of over nonzero x norm of x divided by

norm of x plus supremum over nonzero x norm of b x divided by norm of x and this is

nothing but matrix norm of A induced by vector norm v and this is nothing, but vector

matrix norm of B induced by vector norm v here.
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So, this follows the triangle inequality part. So, this shows that this subordinate matrix

norm is actually a matrix norm because it satisfies all the 3 properties here.
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Now, here we also define a consistent norm that a matrix norm and a vector norm are

called consistent if we have this relation that v norm of A x it means that vector norm of

A x is less than equal to matrix norm of A into vector norm of x and this follows for

every x in R n.

Here I am talking about matrix of size m cross n here. So, if we have this kind of relation

then we say that matrix norm and vector norm are consistent to each other. Then with the

help of previous example or by the definition of subordinate matrix norm we can say that

subordinate matrix norm and its corresponding vector norm are consistent to each other.

So, how it follows? It follows from the definition itself let us see how it is. So, here we

have defined matrix norm like this. 

So, matrix norm is defined as supremum norm of A x divided by norm of x v and this is

taken over all nonzero vectors of R n. So, this I can say that that supremum, it means that

norm of a supremum, norm of a is going to be greater than or equal to norm of A x

divided  by  norm of  x  here  of  course,  x  is  nonzero  otherwise  this  derivative  is  this

denominator is not defined. So, this implies that norm of A x is less than or equal to norm

of A and norm of here. So, here we say that subordinate matrix norm and vector norm are

consistent to each other.

Now, let us move to one more definition we say that any matrix norm is consistent if for

any 2 matrices A and B compatible for matrix multiplication, the following property is

satisfied. That matrix norm of AB is less than or equal to matrix norm of A into matrix

norm of B and we try to show that the Frobenius norm which we are going to define in

next lecture in all subordinate norms are consistent in this definition here. And here I just

want to tell that not all matrix norm satisfying this property. So, it means that not all

norms defined on set of all matrices satisfy this property.

For example, if I take see this is let us say 2 cross 2 matrix over R here and we want to

show that matrix norm of AB is less than equal to matrix norm of into A and matrix norm

of B here. So, here let us define the matrix norm as say maximum of a ij, i is from 1 to n

and j is from 1 to m whatever be the since I am taking m and n as 2. So, here I can say

that it is, i is from 1 to 2 and j is from 1 to 2. So, we want to show that this is the norm

defined on this, but it actually it does not satisfy this property. For that if we take a as 1 1

1 1, then you can check that, if you take B equal to A then look at the norm of A square



and norm of A square. So, what is this quantity? So, if you look at norm of A; norm of A

will be what? Maximum of a ij's which is 1 and square is going to be 1 here.

Now, look at the matrix norm of A square matrix, norm of A square will be what? Just

find out 1 1 into 1 1 1 1. So, see what you will get? 2 2 2 2. So, here matrix norm of A

square is going to be 2 here. So, here we can say that if it satisfy the following property

then this implies that 2 is less than or equal to 1 which is really absurd. So, it means that

not all norm define on set of all matrices satisfy this property it means that not all norms

are consistent norm.

Now, we want to prove in this theorem that the subordinate matrix norm which we have

defined earlier is a consistent norm.
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So, it means that it satisfy this property, that the subordinate matrix norm is a consistent

norm here. So, to prove this we want to show that v norm of AB is less than or equal to v

norm of A into v norm of B here and here since A and B are product is defined. So, it

means that A and B are compatible matrix. So, let us say A as is m cross n real matrix

and B is n cross k real matrix.

So, by definition v norm of AB is defined as supremum taken over all x in R n, nonzero

vectors in R n, ratio of these 2 things that norm of AB x divided by norm of x. Now, look

at this numerator here numerator says that v norm of AB x and this can be written as that



A applied  on  B  of  x.  So,  A applied  on  B  of  x  and  then  we  can  say  that  by  the

compatibility by the consistency of vector norm and matrix norm which is defined here

we can say that this is less than or equal to v norm of A and vector norm of B x. So, here

if you look at B x is a vector here right and B x is a vector in R n is it ok.

So, now, again here we use the consistency of matrix norm and vector norm. So, we can

say that this is less than or equal to vector norm matrix norm of A into matrix norm of B

into vector norm of x here. So, now, using this equation inequality given in 5 in 4 we can

say that v norm of AB is less than or equal to supremum over nonzero x in R n and now

this is less than or equal to this quantity. So, this divided by this and so it is given by

norm of A norm of A into v norm of B. So, it means that subordinate matrix norm is

consistence matrix norm. So, that is what we claimed here, in the end of the definition 9

and we have proved here that the subordinate matrix norm is actually a consistent matrix

norm.
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So, now moving on to next result. We have that the matrix norm which is infinity norm

of a which is subordinate to infinity norm of x satisfy the following property, that infinity

norm of A infinity matrix norm of A is defined at maximum of summation j equal to 1 to

n one loss of a ij, i is running from 1 to m and if you look at carefully it means what we

are fixing i and taking this sum over j. So, it means that if you look at we fix a row and

take the sum of all the element of row and once we have taken row sum then we try to



find out a maximum from maximum value of this. So, basically it is matrix maximum

row sum norm. So, infinity norm is what? Maximum row sum norm and similarly we can

define 1 norm and 1 norm is what, is summation i equal to 1 to n modulus of a ij and

maximum is taken over all j between 1 to n.

So, basically here if we look at the previous definition here we have taken sum of all the

row element and then finding the maximum of that sum. Similarly here we are fixing j

here. So, it means we are fixing a column here. So, fix a column and then take the sum of

element given in that column and then try to find out the which one is the maximum. So,

that is why we call this one norm of a as maximum column sum norm is it and we want

to show that this actually defines a matrix norm.
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So, here we want to find out say infinity norm of A of x which is which we claim that it

is equal to maximum of i running between 1 to m modulus of j equal to 1 to n a ij x j. So,

just look at here how it is obtained here.
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So, we have matrix A we have vector x here. So, matrix A is m cross n, we are writing it

here and then it is vector of size n cross 1. We multiply then we have this vector. So,

vector is given by that first element of this is given by j equal to 1 to n a ij, a 1 j x j and

second component is given by j equal to 1 to n, a 2j x j and similarly mth component is

given by j equal to 1 to n a mj x j. So, if we call this vector as vector y 1 to y m then

infinity norm of A x is basically infinity norm of this vector. So, infinity norm of this

vector will be what? Maximum of its component which over be the maximum of this

component we call this as infinity norm of this vector and hence infinity norm of this x.

So, we can say that A x; infinity norm of A x means maximum of these y i and i is

running from 1 to m.

Now, what is y i here? y i can be written as summation j equal to 1 to n a ij x a here. So,

that is what we are claiming here that infinity norm of A x is given by maximum of

maximum of summation j equal to 1 to n a ij x j and i is running between 1 to m here and

this is less than or equal to this quantity. Here what we have taken? We have taken the

modulus inside. So, here we can say that maximum of 1 less than i equal to i less than or

equal to m summation j equal to 1 to n modulus of a j k x k here. Just look at here how

we have obtained here.
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So,  if  you look at  this  last  quantity  here.  Now, here  this  x  k  is  bounded above by,

modulus of x k is bounded above by infinity norm of x for each k, for each k here, k is

from 1 to n, k is from 1 to say n. So, this implies that this is less than or equal to you take

out  that  infinity  norm.  So,  infinity  norm of  x  and what  is  left  here  is  writing  here

maximum of i from 1 to m summation j equal to 1 to n modulus of a jk right.

So, here this implies that by the definition of subordinate matrix norm, norm of A infinity

which is equal to supremum of x nonzero belongs to R n norm of A x infinity divided by

x infinity, which is given by. So, that this quantity is going to be maximum of i 1 less

than or equal to m summation j equal to 1 2 n modulus of a jk is that. So, that is what is

given here.

Now, we shows that this inequality given in 6 is true. Now, we want to show that this

inequality is nothing, but equality here. So, it means that this maximum value is achieved

at some for some vector x here. So, for that let us say that let k be an integer such that

this maximum is achieved at this. So, it means that maximum over this quantity j equal

to 1 to n modulus of a ij is achieved for kth row. So, it means that, if you look at these are

how many  rows  these  are  m rows and we can  say  that  we can  easily  find  out  the

maximum is  achieved at  what  rows.  So,  let  us  say that  k  is  the row for  which  this

maximum is achieved. So, maximum of this is achieved at kth row. So, here if you look

at infinity norm of x naught, where x naught j is defined here in the slide that x naught j



is equal to a kj divided by m modulus of a kj if a kj is not equal to 0 and x naught j is

equal to 0 if a kj is equal to 0. Then we can say that infinity norm of x naught is equal to

1 and our claim is that infinity norm of a x naught is equal to j equal to 1 to n modulus of

a kj.

Now this is what? This is what we try to say that this is nothing, but maximum of I from

1 to m, j equal to 1 to n modulus of a ij. So, it is nothing but, this is nothing but infinity

norm of a. So, it means that equality is achieved for this vector x naught. So, it means

that this 6 is not only in equality, but it is an actually an equality because this maximum

is achieved for sum x. So, 2, so that this is true let us look at here that infinity norm of x

naught is equal to by definition it is maximum of i between 1 to m j equal to 1 to and a ij

modulus of x j naught.

Now, here we say that this maximum is achieved for kth row. So, we say that j equal to 1

to n modulus of a kj x j naught, now x j naught is defined as a k j divided by modulus of

a kj. So, if you simplify this is nothing, but modulus of a kj whole square divided by

modulus of a kj. So, this simplify that it is given by j equal to 1 to n modulus of a kj and

if  you look at  we have already assumed that  this  is  nothing,  but  the  maximum of I

between 1 to m summation j equal to 1 to n modulus of a ij and this is this is what we

have denoted as infinite norm of A. 

So, it means that for this vector x naught this infinity norm of A of x is equal to the

infinity norm of A. So, it means that equality is achieved for this x naught. So, it means

that the inequality 6 which we have written is achieved is nothing, but equality. So, it

means because this is equal for a norm for a vector x naught and defined here. So, this

shows that infinity norm of A is defined by this part A m. Similarly we want to define,

we will prove for B here.
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So, here I am quickly writing here that 1 norm of x is given by summation i equal to 1 to

m, summation j equal to 1 to n a ij x j. This also follow follows from the fact here that

you calculate A x and A x is given by here, now one norm it will be the sum of all these

elements here.
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If you find out the sum of all the element here you will say that your one norm of x is

defined by this, i equal to 1 to m summation modulus of summation j equal to 1 to n a ij



x j and now this is less than or equal to summation j equal to 1 to n modulus of x j,

summation i equal to 1 modulus of a ij.

Now, we can say that this is sum here which is if you take these sum here for each j. So,

let us take that for each j we can find out some value then take the maximum of all those

values. So, it means maximum of j from 1 to n summation i equal to 1 to m a ij we can

take it out. So, this if you take that number out then what is left here is summation j equal

to 1 to n modulus of x j which is nothing but 1 norm of x. So, we can say that 1 norm of

x is less than or equal to 1 norm of x maximum of j from 1 to n summation i equal to 1 to

m modulus of a ij. So, which shows that by definition 1 norm of A is going to be less

than from this quantity, that is maximum or taking over j from 1 to n j, i equal to 1 to m

modulus of a ij.

Now, we want to show as we have shown in first case that this equality will be achieved

somewhere. So, here to find out the equality let us see that k be the integer such that this

maximum  is  achieved,  maximum  is  achieved  for  kth  column.  So,  let  us  say  that

maximum from 1 to n, i equal to 1 to m modulus of a ij is achieved for kth column. So, it

means if you look at the kth column then column sum is going to be maximum here. So,

it is given as i equal to 1 to m modulus of a ik is going to be the maximum of these

quantity.

Now, for this k we define vector say x which is given by e k, e k means kth element of

basis vector of R n. So, here we say that one norm of x is nothing but 1 and if you equate

the 1 norm of A x then it is nothing but i equal to 1 to m modulus of a ik which implies

that the equality is achieved for this x. So, it means that this 7 is nothing but inequality is

nothing but equality here. So, this proof that 1 norm is actually a norm. So, here what we

have shown here that infinity norm is given by this and one norm is given by this. So,

infinity norm is what? Maximum row sum norm and one norm is maximum column sum

norm.

So, here I will stop here and in next class will, next lecture we will discuss some more

properties of matrix norm and some important properties based on this matrix norm. So,

here we stop. Thank you for listening us.

Thank you.


