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Hello friends. I welcome you to my lecture on conditioning and condition numbers one.

There will  be two lectures on this topic.  This is first lecture,  after  that we will  have

second  lecture  on  this  topic  conditioning  and  condition  number  one.  Conditioning

pertains  to  the  perturbation  behaviour  of  a  mathematical  problem a problem may be

viewed as a function f from X into Y where X and Y are normed vector spaces or you

can say normed linear spaces.

(Refer Slide Time: 00:44)

X is the normed vector space of data and Y is the normed vector space of solutions.
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F is a function from X into Y where X and Y are a normed vector spaces, the vector

space is also termed as a linear space. So, X and Y are normed linear spaces.

As  you  know, a  vector  space  is  one  where  we have  a  collection  of  objects  say  be

equipped with 2 operations denoted by addition and scalar multiplication and we have a

field of scalars v is called vector space with respect to the operations of vector addition

and scalar multiplication, if over the field f if it is v is an Abelian group with respect to

addition,

Now, addition is a binary operation on v means when X and Y are any 2 vectors in v,

then x plus Y belongs to v and corresponding to the Abelian group we have associativity

if we take vector u v w in v, then u plus v plus w is equal to u plus v plus w. So, v must

be associative with respect to addition, then commutatively where we say if you take any

2 vectors u and v in v, then u plus v is equal to v plus u, then we have existence of

additive identity. So, existence of identity must be there; that means, their exist vector

which we denote by 0 in v such that u plus 0 is equal to u for all u belonging to v and

then we have existence of additive inverse.

So, to each u belonging to v, there must exist a vector denoted by minus u in v such that

u plus minus u is equal to 0 vector the additive identity in v and we have. So, if we have

all these properties in v, then v said to be an Abelian group with respect to addition and

then corresponding to scalar multiplication in this scalar multiplication, what it is if you



take a scalar alpha belongs to f and a vector u belongs to be, then alpha into u belongs to

f. So, when alpha belongs to f and u belongs to v then alpha into u will be there in v.

So, v is  close with respect  to scalar  multiplication,  then it  is  satisfy the following 4

properties, if we have alpha beta belonging to f and u belonging to v, then alpha beta u

equal to alpha beta into u and then we have the scalar multiplication is distributive over

addition  alpha  into  u  plus  v  equal  to  alpha  u  plus  alpha  v  scalar  multiplication  is

distributive over vector addition.

And then we have third alpha plus beta into u is equal to alpha u plus beta u and the

fourth one is multiplicative identity 1 into u is equal to u for all u belonging to v where

one belongs to f the field of scalar.

So, if  v satisfies  all  these properties  we say that  v is  a vector  space with respect to

addition and scalar multiplication now it is called a normed vector space or a normed

linear space, if we further define a function denoted by this from, v into R such that norm

of v is greater than or equal to 0 for all v belonging to v norm of v is equal to 0, if and

only if v is equal to 0 and then norm of alpha into v is equal to mode of alpha norm of v

where alpha is the scalar in f and then we have norm of u plus v less than or equal to

norm of u plus norm of v where u and v are any 2 vectors in v.

So, if v is equipped with this function or find v into R then we say that v is a normed

vector space. So, here a function a problem may be viewed as a function from a normed

linear space x into a normed linear space by where x is the space vector space of data and

Y is the vector space of solutions.

Now, a well-conditioned problem is one with the property that all small perturbations of

x lead to only small changes in fx; that means, if you make a small perturbation in the

input data x, then corresponding to this that there must be a very small change in the

value of fx, then the problem is said to be a well condition problem now that that change

in the data may be due to an error or it may be done by a. So, some if we if there is a

small error in the data input data x then corresponding to that in the value of fx, there

must be a small  change, then we say that  the problem is well  conditioned otherwise

problem is said to be ill conditioned.



So, this means that a problem is well conditioned if f dash is approximately equal to x

implies that fx dash is approximately equal to fx, otherwise, the problem is said to be ill

conditioned. So, we can define an ill conditioned problem as the one with the property

that a small perturbation of x leads to a large change in fx.

Now, condition number can be are of 2 types absolute condition number and relative

condition number.
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Let us see how we define an absolute condition number let us say delta x denote a small

perturbation of x and delta f denotes the change in the value of f corresponding to the

change delta x in the value of x. So, delta f is equal to fx plus delta x minus fx, then the

absolute condition number k which is k of x because it depends on f as well as x. So, k of

x of the problem f at the point x is defined as k of x equal to limit  delta tends to 0

supremum norm of delta x less than or equal to delta of norm delta f over norm of delta

x.

Now, here when we say norm of delta f norm of delta f is the norm that is the norm in the

space Y because norm of because delta f is equal to fx plus delta f minus fx. So, fx from

delta x and fx, they are the values of f in the space Y and therefore, norm delta f means

norm in the space Y and in the denominator we have norm delta x, this is the change in

the value of x this is the input data. So, here we norm by norm we mean that it is the

norm in this space x.



So, when there is a very small, I mean when delta is very small then maximum value of

the ratio norm of delta f over norm of delta x is defined to be the absolute condition

number. So, when delta x and delta f are sufficiently small, we generally write k of x

equal to supremum of over delta x norm of delta f over norm of delta x.

(Refer Slide Time: 10:29)

Now, if f is differentiable and then we can evaluate the condition number by means of

the derivative of f up to a first order approximation up to a first order approximation

means the second and higher order powers of delta x may be neglected. So, then up to

the first order approximation the definition of derivative yields delta x equal to J x delta

x if f is differentiable, we can evaluate the condition number by means of the derivative

of f up to a first order approximation means these second order and higher order terms

containing delta x are neglected.
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So,  up  to  first  order  approximation,  the  definition  of  derivative  yields  us  delta  f  is

approximately equal to J x into delta x where J x is the Jacobean matrix and as you know

the  Jacobean  matrix  is  the  matrix  of  all  first  order  derivatives  Jacobean  matrix  a

Jacobean matrix, it is the matrix of all first order derivatives of a vector valued function.

So, if f is the function from R n to R m, R n to R m, then the Jacobean of f, let us take

any x belonging to R n, if f is a mapping from R n to R m and x belongs to R n, then the

Jacobean matrix of f is defined as that is this is equal to oh this is delta f 1 over delta x n

here we have delta f 2 over delta x m and so on delta formula over delta x n. So, we get

m by n matrix, this row has got m this matrix has got m rows and n columns.

So, if f is mapping from R n to R m that is it is a vector valued function which takes as

input the vector x belonging to R n and produces an output the vector f x belonging to R

m then the Jacobean matrix J of x is an m by n matrix as we have seen here this can also

be written as where i denotes the row and z denotes the column. For example, this can

also be written as here the vector x belongs to R n this x we have taken as R x 1, x 2, x n

and f 1, f 2, fm are the m components of the vector valued function f.

For example, let us consider this would be f 1 and this will be x 1, x 2, x 2. So, this is m

by n matrix. So, when we have a vector valued function f from R n to R m, then the

Jacobean matrix is of size m by n, we can also express it as delta f 1 f 2 fm divided by

delta x 1 x 2 x n.



Now, let us take an example on this to make it clear suppose we take a function f from R

cube to R x square where it f is defined as x 1, x 2, x 3, a vector in R cube as 5 x 2 4 x 1

square minus 5 2 sin x 2, x 3,

So, let us take a function from R cube to R square which is defined as f x 1, x 2, x 3

equal to 5 x 2 4 x 1 square minus 2 sin x 2, x 3, then let us find the Jacobean of x with

respect to the vector x that is x 1, x 2, x 3.
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So, what we will have then J of x where x is let x be equal to x 1, x 2, x 3, then J of x is

equal to. So, f has got 2 components. So, this f 1; f 1, x 1, x 2, x 3, this is f 2 x 1, x 2, x 3.

So, f has got 2 components.

So, delta f 1 by delta x 1 and then delta f 2 by delta x 1 we will have, then delta f 1 by

delta x 2 delta f 2 by delta x 2 and then we have delta f 1 by delta x 3 delta f 2 by delta x

3 n is equal to 3, here m is equal to 2. So, we have 2 by 3 matrix and this is equal to now

when you differentiate f 1 x 1 x 2; f 1 x 1 f 1 is a function of x c 1 x 2 f 1 is equal to 5 x 2

and f 2 x 1; x 1 x 2 x 3 and f 2 x 1 x 2 x 3 is equal to 4 x 1 square minus 2 sin x 2 x 3.

So, we can find the Jacobean matrix easily when you differentiate f 1 with respect to x 1

you get 0 when you differentiate f 1 with respect to x 2, you get 5 when you differentiate

f 1 with respect to x 3, you get 0 when you differentiate partially f 2 with respect to x 1

you get 8 x 1 and then you differentiate f 2 with respect to x to. So, you get minus 2 cos x



2 x 3 into x 3 and then the derivative partial derivative of f 2 with respect to x 3 we will

get again as minus 2 cos x 2 x 3 into x 2 . So, we will get a 2 by 3 matrix

So, Jacobean of f which is defined from R cube to R square gives us a matrix of size 2 by

3 this, how we can obtain the Jacobean matrix. So, let us go back to a our discussion of

the condition number we see that delta f is approximately equal to J x into delta x where

J x is the Jacobean matrix of the partial derivatives of f at the point x. Now here when

norm of delta x goes to 0 that is norm of delta x sufficiently small the condition number

becomes this like this.

See when norm of delta x goes to zero; that means, delta x sufficiently small. So, that we

can neglect the second and higher order terms containing delta x then k of x k of x is

equal  to  supremum of  norm of  delta  f  divided by norm of  delta  x  delta  x.  So,  the

maximum value of perturbation delta x in the input delta x. So, this is this when delta x

tends to 0 we can take k f x to be approximately equal to norm of delta f over delta norm

of delta x.
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So, when delta x is infinitesimally small k fx can be approximately taken as equal to

norm of delta f divided by norm of delta norm of delta x, but just now we have seen that

norm of  delta  f  is  equal  to  delta  f  is  equal  to  J  x  into  delta  x.  So,  since  delta  f  is

approximately J x in to delta x norm of delta f will be equal to norm of J x into norm of

delta x.



So, let us put this value there. So, then k fx is approximately equal to norm of jx. So,

when delta x is sufficiently small the absolute condition number is approximately the

norm of the Jacobean matrix where norm of Jacobean matrix where norm of the matrix J

x is the norm induced by the norms on x and y.

Now, let us go to the relative condition number.

(Refer Slide Time: 23:11)

When we are concerned with relative changes we need the notion of relative condition.

So, the relative condition number k fx is defined as k fx equal to limit delta tends to 0

supremum of norm of delta x less than or equal to delta.
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And then norm of delta f divided by norm of fx divided by norm of delta x divided by

norm of. So, it is the quotient of the relative change in f divided by the relative change in

x, you can see norm of delta f over norm of delta norm of fx gives us the relative change

in f and norm of delta x divided by norm of x is gives the relative change in x.

So, it is the quotient of the relative change in f and the relative change in x and we take

delta to be sufficiently small it is go going to 0. So, when delta x is sufficiently small we

can say that when delta x and delta f are sufficiently small k fx is approximately equal to

norm of delta f divided by norm of fx divided by norm of delta x divided by norm of x.

Now, when delta x is sufficiently small we have seen delta f is approximately equal to J x

into delta x where J x is the Jacobean of f. So, you can write it also as fx J fx. So, then

what will happen here is that again ah. So, replacing J norm of delta f Y this one norm of

J fx into norm of delta x. So, replacing norm of delta f by norm of J fx into norm of delta

x we get k fx equal to norm of. So, this is norm of J fx into norm of delta x divided by

norm of fx into norm of x divided by norm of delta x. So, this will cancel and we will get

this as same as norm of J fx divided by we write it like this norm of fx divided by norm

of x.

So, k fx is given by the norm of the Jacobean matrix of f J fx divided by the norm of fx

over norm of f. So, this is the case when f is differentiable we can express the Jacobean



number the condition number k fx which we also write as k in terms of the Jacobean of

norm of the Jacobean matrix of f. So, now this is the formula we have.

Now, let us remark here that the absolute and relative condition numbers.

(Refer Slide Time: 27:02)

Both  are  used  in  a  literature,  but  the  condition  relative  condition  number  is  more

important  because  the floating  point  arithmetic  used by computers  introduce  relative

errors  rather  than  absolute  ones  we  have  seen  that  by  example  we  have  seen  the

information that we do not get about the accuracy of the numbers from the absolute error

the absolute error is same in both the cases, but when we found out the relative error it

turned out that one approximation is better than the other. So, relative numbers are used

in the floating point arithmetic relative errors are used.

So,  now addition  multiplication  division  with  positive  numbers  are  well  conditioned

problems because when we carried out carried out addition multiplication division with

positive number we have seen that the there is no appreciable error in the relative in the

relative error. So, that whatever change is there in the relative error as a result of addition

multiplication division operations that is not very large when the relative errors in X and

Y are the small the relative error in X plus Y or X into Y or X over Y is also small which

is  acceptable.  So,  they  are  well-conditioned  problems,  but  subtraction  is  not  well

conditioned  problem  because  we  have  seen  that  when  we  subtract  to  nearly  equal



numbers there may be situation where the relative error gets too large. So, subtraction

cannot be taken as a well-conditioned problem.
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Now, let us illustrate this article are let us find out the condition number in case of some

examples consider the problem of computing to root x for x greater than 0. So, we are

given the function f from x to root x here which is defined as fx equal to root x.

(Refer Slide Time: 29:05)

So, f is a function form from R into R f is a function from R from a normed vector space

R into R defined as fx equal to root x x is given to be positive.



Now, here Jacobean of f will be what because here m and n m and n both are equal to

one. So, the Jacobean matrix will be of size one by one; that means, Jacobean matrix of f

with respect to x will be the partial the derivative of f with respect to x f is a function one

variables we can write df over dx which is equal to one by 2 root x here. Now condition

number k fx will be equal to norm of J x relative condition number we are going to find

this divided by norm of fx divided by norm of x.

In case of R here norm of x is defined as mode of x and norm of fx will be defined as

mode of fx and. So, this and norm of J x norm of J x will be mode of J x which is one by

2 root x. So, one by 2 root x divided by fx is equal to root x. So, root x x divided by x,

we have norm of x is equal to mode of f x and norm of fx equal to mode of fx in case of

r. So, this is equal to 1 by 2 norm of J x equal to 1 by 2 root x norm of fx equal to root x

and norm of x equal to x. So, this gives you 1 by 2 and therefore, we can say that the

problem is well conditioned. So, the problem is well conditioned here. So, when we find

when we find out root x for a given value of x the input data x then the problem of

computing root x from x is a well conditioned problem.
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Now, we go to another case where f is a function from R c square into c f is a function

from C square into C, C is the set of complex numbers and the function. So, let us say, let

x 1 x 2 be an element of C square x equal to x equal to x 1 x 2 be an element of c square

than fx is defined as x 1 minus x to.



Now, here we again find the condition number. So, here J f not J fx what is J fx, here x is

equal to x 1 x 2 f f is a function from c square into c. So, n is equal to n is equal to 2 here

and m equal to one here. So, we will get one by 2 matrix and that one by 2 matrix will be

delta  f  over  delta  x  1  delta  f  over  delta  x  2  this  is  one  by  2  matrix  because  the

components of h there is one component of f that we can write as f. So, delta f over delta

x 1 delta f over delta x 2 and this is equal to 1 and minus 1.

Now, the norm in c we are taking as infinity norm. So, norm of J x J fx infinity norm this

is  matrix  norm the infinity  norm in the case of matrix  is  defined as m x maximum

absolute row sum.
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If you have let say, let A be equal to aij m by n, we have a m by n matrix equal to aij,

then  the  infinity  norm  on  the  matrix  is  defined  as  maximum  of  this  is  mean  that

maximum absolute row sum maximum absolute row sum. You can see here J runs from 1

2 and so, we have if you take i equal to 1, then you have mode of a 1 1 mode of a 1 2

plus mode of a one n and then in the second row you have taken i equal to 2 mode of a 2

1 mode of plus mode of a 2 2 and so on plus mode of a to n.

So, you find the absolute values of all entries in the row and then take their sum and once

you have done it for all rows fine take the maximum value of that. So, here what do you

see here there is only one row? So, if you take the row sum absolute row sum than one

plus one it is equal to 2 and there is only one row. So, this is the maximum value.
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So, norm of J infinity equal to 2 and therefore, the condition number is now norm of fx

in c is same as mode of f mode of fx. So, this is equal to this is this infinity norm here.

So, we have 2 and then this mode of this we have mode of x 1 minus x 2 because fx is an

element belonging to C which is x 1 minus x 2. So, mode of x 1 minus x 2 and norm of x

norm of x, we take as maximum of f infinity norm maximum of mode of x 1 mode of x 2

which is the infinity norm in c square.

So, now we can see here this k is large if x 1 minus x 2 approximately equal to 0 and so,

the problem is ill conditioned when x 1 and x 2 are nearly same this thus matching with

our intuition of the hazards of cancelation error in the case of cancellation error we can

we have seen that the relative error gets when becomes very large this means that the

condition number becomes very large.

So, the problem is ill condition and if x 1 and x 2 are nearly equal here.
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Then we can take the problem of fx equal to e to the power x here f prime x. So, f is a

mapping from R into R lets say fx equal to e to the power x. So, f is a mapping from R

into R defined as fx equal to e to the power x. So, f prime x we can find f prime x equal

to e to the power x because in the case of n and n both equal to one here the Jacobean

matrix J is 1 by 1 matrix which is the derivative of f. So, J fx equal to derivative of f with

respect to x or you can say f prime x. So, here k fx will be equal to norm of J fx divided

by norm of fx divided by norm of x.

So, we have e to the power x we know. So, mode this is f this is equal to f prime e to the

power x. So, e to the power x we shall have norm of J fx will be the modulus of e to the

power x here divided by norm of fx is again mode of e to e to the power x. So, we have e

to the power x divided by we have mode of x. So, this is equal to mode of x.

So, we can say that the given function is well conditioned for x near 0 because then of

the condition number will be very small and ill condition where mode of x greater the

greater than zero; that means, mode of x is sufficiently greater than 0, then we can take

the problem of fx equal to lnx where x is greater than 0.
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So, here again f is a mapping from R into R f is a mapping from not R f is a mapping

from 0 infinity into R it  is  not defined at  0.  So, we can say 0 infinity  into R f  is  a

mapping from 0 infinity into R defined as fx equal to lnx ok.

So, here again f prime x equal to one by x and. So, J fx equal to one by x and. So, kfx

equal to J fx that is 1 by x divided by x times fx. So, that is lnx fx is equal to lnx mode of

lnx mode of lnx divided by x because we have f dash x which is J fx divided by norm of

fx norm of fx is mode of lnx divided by norm of x and norm of x is equal to mode of x or

x because x is greater than 0. So, this equal to 1 over mode of lnx; so, when x is very

close to 1, then lnx is close to 0, so, the function fx is ill  conditioned for x which is

nearly equal to 1 with that I would like to close this discussion.

Thank you very much for your attention.


