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So, hello friends, I welcome you to my lecture on Orthogonal Subspaces. Let us consider

a real vector space b that is a vector space where the field is the set of real numbers.
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Now, if let us suppose that if we can assign to each pair of vectors u v belonging to B a

real number donated by this, then the this function by which we are able to associate to

each pair of vectors u v a real number given by this notation is called in a product on b

provided it satisfies the following axiom.
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The first axiom is the inner product of au 1 plus bu 2 with v is equal to au 1 v plus bu 2 v

and the second one is u v equal to v u the third one is u u is greater than are equal to 0

and then u u equal to 0 if and only if u equal to 0. So, the vector space b equipped with

this inner product is called a real inner product space.

Now, from the if we look at the axioms 1 and 2, if we look at the axiom 1 and 2 au 1 plus

bu 2 v equal to au 1 v plus bu 2 v and u v equal to v u then from these 2 axioms, we can

easily a prove that u c v 1 plus d v 2 is equal to c u v 1 plus d u v 2 because u cv 1 plus

dv 2 is equal to cv 1 plus dv 2 u by the axiom 2 and then applying axiom 1 we have c v 1

u plus d v 2 u.
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Now, we apply the axiom 2 and we get c u v 1 plus d u v 2 that the inner product is linear

in the first position as well as in the second position.
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And if we apply the mathematical induction we can easily show that the inner product of

sigma i equal to 1 to n, a i u i and sigma j equal to 1 to m b j v j is equal to sigma i equal

to 1 to n, sigma j equal to 1 to m, a i b j inner product of u i v j which implies that an

inner product of a linear combination of vectors is equal to a linear combination of the

inner products of vectors.



Now, from axiom 1 let us see the axiom 1 this is axiom 1, au 1 plus bu 2 v is equal to au

1 v plus bu 2 v. From this axiom we have the following 0 0 see 0 0 equal to the inner

product of 0 vector with 0 vector I can write as 0 u 0, because 0 u is equal 0. So, 0 u 0

and then I apply the first axiom. So, I can write the 0 u 0, 0 u 0 and this is equal to now, u

0 is a real number. So, 0 into u 0 equal to 0. So, this means that the first, second and third

axioms of the inner product are equivalent to first and second and the axiom.
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So, 1 2 and 3 the 3 axioms of the inner product are equivalent to 1 2 and the axiom, if u

is not equal to 0 vector then the inner product of u with u is strictly greater than 0.

So, a vector space with the first axiom, second axiom and this third one if u not equal to

0 then u u inner product of u u greater than 0 this will call as I will v a real inner product

spaces. Now, let us define the norm of a vector from the third axiom the third axiom of

the inner product  space tells  us that  the inner product  of u with u is  a non-negative

number. So, we can take the square root of this and define norm of u norm of u is equal

to norm of u is the length of the vector u. So, this is multi square root of u with u. Now,

this notation is called at the norm or the length of the vector u.

Now, we have the examples of inner product space, let us say the vector space R n over

the real field R which is known as the fluid in any space. So, R n R let us consider.
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Let us define the inner product in R n as the dot product or scalar product in R n. So, let

u v belong to R n then the inner product of u with v in R n v defined as the dot product of

u with v are the scalar product of u with v. So, if I write u as x 1, x 2, x n and v as y 1, y

2, y n then I right x 1, y 1 plus x 2, y 2 and so on x n, y n where u is the vector which are

elements of R n and we can easily check that all the axioms of the inner product are

satisfied by when we define the scalar product as the inner product in R n. So, with this

inner product R n becomes a inner product space.

Now, there are many other ways in which we can define an inner product in R n, but

throughout our future discussion we shall be considering this inner product in R n and

this inner product in R n is called we usual R standard inner product, and because of this

and inner the inner products this space R n with this scalar product has the inner product

this also called as the usual inner product space.
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Now, they other  space where we have we define inner product  let  us take as C a b

function is space C a b.
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So, C a b is the space of all continuous functions on the bounded and closed interval a b

we can write C a b as all functions defined from a b into R such that f is continuous

function. And then let us define plus take any 2 functions f and g in C a b and define the

integral of f t g t as the 2 each f and g belonging to C a b let us associate a number f g in

this  manner. We can again  check that  all  the  axioms of  the inner  product  space  are



satisfied. So, this define say inner product in C a b and so with this inner product C a b is

a inner product space.

Now, let us move to a orthogonality, let say we have the concept of orthogonality if we

take 2 vectors x y belonging to R n. They are called orthogonal if there dot product is 0,

so if x and y are there in R n then they will be orthogonal if x dot y equal to 0 and then

we have the next definition a vector x belonging to R n will be called orthogonal to a set

by which a subset of R n provided x that y is equal to 0 for any y belonging to R n.
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Now, if we take 2 sets x and y which are subsets of R n they will be orthogonal provided

x dot y equal to 0 for any x belonging to x and y belonging to y. Now, let us take some

examples.
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Let us take the space R q and see the examples where you will see that if you take the

line x equal to y equal to 0, x equal to y equal to 0 means z axis.
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This line is nothing, but z axis. So, it is orthogonal to the plane y equal to z equal to 0, it

is it is orthogonal y equal to z equal to 0; y equal to z equal to 0 means y equal to z equal

to 0 it sorry not plane it is line sorry, it is line orthogonal to the line.
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Now, we can see this is very easily this is you are x axis, this is y axis and this is z axis.

If you take any point on the x axis a point on the x axis can be written as are a vector on

the x th e line y x equal to y equal to 0 is given by on the line x equal to y equal to

0 is given by 0 0 let us say k. And a vector on the line y equal to z equal to 0 is given by l

0 0, where l is a real number. Now, let us take the dot product of the 2 vectors say this is

u and this is v. Then u dot v is equal to 0 0 k dot l 0 0 which we have defined as the

scalar product. So, this is 0 into l plus 0 into 0 plus k into 0. So, we get 0.

So, the the line x equal to y is equal to 0 is orthogonal to line y equal to z equal to 0, and

then the line x equal y equal to 0 is orthogonal to the plane z equal to 0. So, you can see

this is z axis x equal to y equal to 0 line and this is your the plane z equal to 0. So, line x

equal to y equal to 0 is perpendicular to the plane z equal to 0 the plane z equal to 0 we

can easily show this. So, if you take any vector here a vector will be of the form at say l

m n 0 a vector; in z equal to 0 is of the form l m 0 ok.



(Refer Slide Time: 14:34)

So, let me call this as u and a vector on x equal to y equal to 0, is of the form 0 0 n. So, u

dot v is equal to 0 and therefore, there orthogonal to each other. But if you can see that

the line x equal to y equal to 0 that is z axis is not orthogonal to the plane z equal to 1

plus is how it is. These your line this z axis x equal to y equal to 0 and say this is your

plane z equal to 1. Then the line x equal to y equal to 0 is not orthogonal to the plane z

equal to 1. Why because the vector 0 0 1, the vector the vector 0 0 1 belongs to the line x

equal to y equal to 0 as well as the plane z equal to 0 z equal to 1. And the dot product of

0 0 1 with itself and 0 0 1 dot 0 0 1 is equal to 1 which is not 0. So, the line x equal to y

equal to 0 is not orthogonal to the plane z equal to 1.

Then we go to the plane z equal to 0 is not orthogonal to the plane y equal to 0. So, these

your plane z equal to 0 and then we consider the plane y equal to 0 this plane. The plane

z equal to 0 is not orthogonal to the plane y equal to 0. Because the vector 0 0 1, 1 0 0 the

vector 1 0 0 lies in both the planes and the dot product of 1 0 0 with itself is 1 which is

not 0. So, the 2 planes are not orthogonal to each other.
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Now, the vector 1 0 yeah, so this is what I have explained in the next line we go over to.

Now, proposition 1 if x and y are 2 orthogonal sets, that means you take any element in x

an element in y they are perpendicular to each other that is the dot product is 0 then

either they are disjoint R x intersection y is equal to singleton set 0. Let see how we get

this.
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So, let X and Y be two subsets of R n which are orthogonal.
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Let this be orthogonal sets then either X and Y are disjoint or X intersection Y is the

singleton set 0. So, let us to prove this assume that X and Y are not disjoint to joint. So,

then let us say let there let there be element let U belong to X intersection Y. So, then U

belongs to X and U belongs to Y. Now, since X and Y are orthogonal sets since X and Y

are orthogonal we have the dot product of any element of X with any element of Y equal

to 0. Now, u belongs to X as well as u belongs to Y. 

So, inner product of u with u is equal to 0 or u dot u equal to 0, u dot u equal to 0 means

norm of u square equal to 0 and norm of u square is equal to 0 implies that u equal to 0 in

the axioms of the inner product space we have said that u equal to 0 if u dot u equal to 0

if and only if u equal to 0. So, if X and Y are not joint then there intersection is the

singleton set 0.

Now, let us go to proposition number 2 let V be a subspace of R n and S b a spanning set

for V then for any x belonging to R n x is perpendicular to S implies x is perpendicular

V. So, if V is subspace of R n let us say and V is equal to span of S, span of S. Now, it

says that  if  you take any x belonging to R n,  for any x belonging to R n then x is

perpendicular to S this sin is x is perpendicular to S implies that x is perpendicular to V.

So, x is perpendicular to V means if take any elements in V let us tell y then x has its

inner product with y equal to 0. So, to prove this let y belongs to V then we have to show

that x is orthogonal to y that is x dot y equal to 0. Now, since S is a spanning set of V, so



since v equal to span of S their exists vectors u 1 u 2 say u m in S and scalars alpha 1

alpha 2 and so on alpha m in R the field R such that V is equal to sigma alpha i u i, i is

equal to 1 to m.
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Now, x dot y is equal to x dot sigma i equal to 1 to m alpha i u i. So, by the since the dot

product are the inner product is linear in first as well as second position I can write it as

sigma i equal to 1 to m alpha i x dot u i. x is orthogonal perpendicular to S. So, x that u i

is equal to 0 for every i. So, we have, we have x dot V y is equal to 0. So, for any y

belonging to V x dot y equal to 0 in therefore, x is perpendicular to V.

Now, let us take an example let us consider the vector 1 1 1 it is orthogonal to the plane

is spend by w 1 and w 2. So, if we can show that these orthogonal to w 1 and these

orthogonal to w 2 then we will be orthogonal to the plane is spend by the vector w 1 w 2

because any vector in the plane will be a linear combination of w 1 and w 2. So, you can

see that dot product of 1 1 1 with 2 minus 3 1 dot product of 1 1 1 with 2 3 minus 1 is

equal to 1 into 2 2 1 into 3 3 and then minus 1. 

So, this is not coming out, this is a 2 minus 3 1 is 2 minus 3 1. So, this is 2 minus 3 plus

1. So, these equal to 0. So, the 1 1 1 is orthogonal to 2 minus 3 1 and similarly 1 1 1 is

orthogonal to 0 1 minus 1. So, it is orthogonal to any linear combination of w 1 and w 2

and therefore, 1 1 1 vector is orthogonal to the plane spend by 2 3 minus 1 and 0 1 minus

1.
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Now, orthogonal  complement,  let  say  we  have  a  subset  S  of  R  n.  The  orthogonal

compliment of S is donated by S perpendicular and it is the set of all vectors x belonging

to R n that R orthogonal to S. So, S perpendicular is defined in this manner.

(Refer Slide Time: 26:57)

So, S is a subset of R n, then S perpendicular is the set of all u belonging to R n such that

the  inner  product  of  u  with  v  equal  to  0 for  every  v  belonging to  R n  for  every  v

belonging to S. So, it is the set of all those vectors u belonging to R n whose a inner

product with any v belonging to S is equal to 0 and as we have already said the inner



product when we write here it will mean that the dot product are scalar product. So, this

the dot product are scalar product of u with v equal to 0 for every v belonging to S.

Now, it is easy to see that S perpendicular is the largest subset of R n orthogonal to S. S

perpendicular is the largest subset of R n it is the largest to subset of R n orthogonal to S.

So, is this means that if you take any subset of R n which is orthogonal to S then that is

sets will be contend in S R S perpendicular. So, you can say that suppose W is a subset of

R n which is orthogonal to S, then we have to show that then we have to show that W is

(Refer Time: 29:08) W C is a subset of S perpendicular. So, S perpendicular the larger

subset of R n which is orthogonal to S means if we take any subset of R n which is

orthogonal to S then that is set has to be a subset of S perpendicular.

So, to prove this let us say suppose I take any element belonging to W. Let w belongs to

W then we have to show that w is this w also belongs to S perpendicular. Now, let w

belong to W, W is a subset of R n which is orthogonal to S this will mean that w has its

inner product with any u belonging to u S equal to 0 for any u belonging to S, w u is

equal to 0 for any u belonging to S.

Now, S perpendicular defines the those vectors of R n whose inner product with any

vector v belonging to S is equal to 0 and w is a vector who is inner product with any

vector  u  belonging  to  S  is  equal  to  0.  So,  this  may  mean  that  w  belongs  to  S

perpendicular. So, it will mean that W is hence, W is a subset of S perpendicular. It is the

largest subset of R n which is orthogonal to S if we take any subset of R n which is the

orthogonal to S then we have to show that that is contained in S perpendicular. So, if we

do this yes. So, W will be a subset of S perpendicular.

Now, let us; so let us, so that S perpendicular is a subspace of R n, S perpendicular. So,

first of all we show that 0 vector of R n and belongs to S perpendicular let us show that 0

vector the 0 vector of R n belongs to S perpendicular. Since the inner product of 0 with u

let us say u is any vector belonging to S then the inner product of 0 with u I can write as

0 u u which is equal to 0 u u. 

So, this is equal to 0 for any u belonging to S and therefore, 0 belong to S perpendicular.

So,  0  vector  is  there  in  S  perpendicular  and  if  you  take  if  u  and  v  belongs  to  S

perpendicular then u w is equal to 0 for any w belonging to S perpendicular and v w is

also 0 u w is equal to 0 and v w equal to 0 for any w is belonging to S perpendicular and,



so, a u plus b v w by linearly in the first position we can write it as a u w plus b v w. So,

a into 0 plus b into 0. So, we get 0. So, a u plus b v belong to S perpendicular.

Similarly we can show that if u belong to S perpendicular and see is any scalar in the

field  R  then  c  into  u  also  belongs  to  S  perpendicular.  So,  next  let  us  show that  S

perpendicular is close with respective scalar multiplication. So, let us say that u belong to

S perpendicular and c belongs to the field R then by definition of S perpendicular u w

equal to 0 for any w belonging to S.
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Now, c u w by linearity in the first position this is equal to c times u w which is equal to

c  into  0.  So,  0  and.  So,  c  u  belongs to  S  perpendicular  hence  S perpendicular  is  a

subspace of R n it is subspace of R n. Now, S perpendicular perpendicular is equal to

span of S, S perpendicular perpendicular we can show that S perpendicular perpendicular

is equal to span of S. S perpendicular we have shown that it is a subspace of R n. So, S

perpendicular perpendicular is also a subspace of R n ok.

So, since S perpendicular is a subspace of R n S perpendicular perpendicular is also a

subspace of R n moreover S perpendicular perpendicular contains S moreover it contains

S. So, span of S span of S is the smallest subspace of R n which contains S. So, span of S

will  also  contained  in  S  perpendicular  perpendicular  and  we  can  show  that  S

perpendicular perpendicular is contained in span of S. So, further sense, they are equal

they S perpendicular perpendicular is equal to span of S.
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Now, in particular if we take any subspace. So, let us say let V be a subspace of R n then

span of V is equal to V. So, is span of V is equal to V. So, let us apply this result. So, by

the equation 1 by 1 we have V perpendicular perpendicular equal to v because span of V

is equal to V.

So, we have this now, considered a line that is x axis we are taking it its elements as x 0 0

and where x belongs to a and plane p where the plane p is the y z plane because the

coordinates of the point they R 0 y z. So, it is y z plane in argue and then we can see that

perpendicular is equal to V, x axis, this y z plane.
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So, this is y z plane and this is x axis. So, here our L is x axis this is L and this y z plane

we have denoted by P, and we know that this line L is orthogonal to the y z plane which

is given by P. So, L perpendicular is P and P perpendicular reason they are orthogonal to

each other. Now, we go to let us say take v and w to v 2 subspaces of R n, so that P is

perpendicular to W.
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So, V is perpendicular to W means either that disjoint are there intersection is equal to 5

is equal to 0 subspace.
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So, then dimension of V plus then dimension of W is less than R equal to n; So, V is

perpendicular to n then dimension of V plus the dimension of W is less than R equal to n.

Now, this follows because let us say dimension of V is equal to k and dimension of W is

equal to L. Let us take a basis for dimension for the v subspace let v 1 v 2 and so on v k,

v a basis for the subspace v and w 1 w 2 w l v a subspace v a basis for the subspace w.

So, by the definition of basis vectors v 1 v 2 v k are linearly independent and the vectors

w 1 w 2 w l are linearly independent. So, then we claim that the set of vectors v 1 v 2 and

so on v k, w 1 w 2 and so on w l the setoff vectors consisting of v 1 v 2 v k and w 1 w 2

w l it is a linearly independent set.

Now,  to  prove  this  you  can  assume  that  is  not  linearly  independent  it  is  linearly

dependent. Suppose it is a linearly dependent set then one vector in the set can be written

as a linear combination of the other vectors let that vector v some v i here you can also

take some w j there. So, the proof will be the same. So, let us say let v i equal to a vector

here is a linear combination of the remaining 1. So, sigma alpha i, v o sorry v i can be

written as a linear combination of v j, j equal to 1 to k and j not equal to i plus sigma i

can write a say R equal to 1 to l, I can write beta r w r. So, this v i for sum i this I will be

taking value from 1 to k sum i k.
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Now, what we can do is we can write like this, or I can write it as v i minus sigma j equal

to 1 to k alpha j oh sorry alpha j, v j, j not equal to i equal to sigma r equal to 1 to l beta r

w r ok.

Now, this is a linear combination of w 1 w 2 to w l. So, a linear combination of w 1 w 2

w l will be an element of w. So, the right hand side here right hand side is a vector in w

and therefore, this is also vector w. So, v i minus sigma j equal to 1 to k j not equal to i

will alpha j v j this belongs to w, but this vector is a linear combination of v 1 v 2 v k

where the coefficient of v i is 1 and the coefficient of v j is R minus alpha j s. But v i

minus sigma j equal to 1 to k j not equal to i belongs to oh sorry alpha j v j belongs to V. 

So, this vector belongs to w as well as this vector belongs to be. So, it will belong to their

intersection. So, v i minus sigma j equal to 1 2 k j not equal to i alpha j v j belongs to V

intersection W. Now, V and W are subspaces they are intersection cannot be empty, the

intersection will be I sorry the intersection will be 0 subspace. So, this implies that v i

minus sigma j equal to 1 2 k j not equal to i alpha j v j equal to 0 vector which implies

that v i is a linear combination of the other vectors in v’s ok.

So, sum v i is a linear combination of v 1 v 2 v i minus 1 and then v i plus 1 v i plus 2

and so on v k. So, this means that v 1 v 2 v k is not a linearly independent set which is a

contradiction. So, this implies that is a linearly dependent set, so there is a contradiction

and hence our assumption was wrong. So, this  set  is  linearly  independent.  Now, the



dimensions of say V dimension of sorry dimension of R n is n and this is a linearly

independent set in R n dimension of R n is n means any linearly independent set in R n

cannot contain more than n vectors. So, this set will always v a 1 the that there are l plus

k vector. So, l plus k will always be less than or equal to n ok. So, l plus k is always less

than or equal to n will mean that dimension of v plus dimension of w is less than or equal

to n.
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Now, here here assuming that let be W is subspace R n. So, that V intersection W is equal

to yeah. So, these a corollary here V is perpendicular to W means the intersection of V

and W is 0 subspace. So, that is what we have a written here let V and W subspace R n.

So, that V intersection W C 0 subspace the dimension of v plus dimension of W is less

than R equal to n. Now, let us discuss fundamental subspaces suppose we have n by n

matrix a.
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Ok, I will finish within 5 minutes.
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So, let us say we are given n y and m y n matrix A. Then the null space of a is the setup

all those vector x belonging to R n, null space of a we have as x belonging to R n such

that Ax equal to 0. And the range of a R A range of a R A is the set of all v belonging to

how it will written R m such that Ax is equal to v for some x belonging to R A. R A is the

range of the linear mapping. 

We can say let us corresponding to the matrix A we have the linear transformation L

equal to R n to R m where we have Lx equal to Ax for x belongs to R n. So, R A is the

range of the linear mapping L from R n to R m where we defined L x equal to x and null

space of a is the kernel of L it is called the kernel of L.



(Refer Slide Time: 49:26)

Now, null space of A is the null space of the matrix A and R A is the column space of A.

So, when it is the column space of A, the row space of A will be R A perpendicular. Now,

let  us see which are the orthogonal  subspaces here.  See Ax equal to 0 means in the

definition null space we have all those vectors x for which Ax equal to 0, Ax equal to 0

means A is this vector, A is this matrix a 11, a 12, a 1n; a 21, a 22 and so on a 2n and then

we have a m1, a m2 and so on a mn and let us say vector x is x 1, x 2, x n. These equal to

0 vector, so we will have 0 0 0.

Now, from this matrix matrix multiplication what follows when you multiply the first

row, the first row the dot product of first row defines the row vector a 11, a 12, a 1n

whose dot product with x 1, x 2 is equal to 0. So, what we have? We have the system of

equations a 11 I can write them in the form of the dot product a 1n and then x 1, x 2, x n

equal to 0 this 1, then a 21, a 22, a 2n and then its dot product with x 1, x 2, x n equal to

0 and so on. So, what we can gather from here that the rows of A are orthogonal to the

solution vector orthogonal the to every vector x belonging to R n, the rows of A are

orthogonal to the vector x belonging to null of A.

And this is the row of A orthogonal to the vector x belonging to null of A, the linear

combination of the rows of A will also be orthogonal to any linear combination of the

rows of A will also be orthogonal to x belonging to null of A. Any linear any linear



combination of so, we can say range space of A and null space of A are orthogonal to

each other.
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So, row sorry row space of A, null space of A, row is space of A means column is row

space of A perpendicular, row space because row rows space of A perpendicular will be

orthogonal because here, yes because null space of a contained in R n. So, we have to

take the range space of A perpendicular, A transpose, A transpose, range of A transpose,

A transpose will have a 11 and 11 and a 21, a 22, a 2n and we will have n we have. So,

range space of A perpendicular will orthogonal to null space of A.

So, they are orthogonal subspaces and then we can say range here also we have written

ranger space of A is R perpendicular the subspaces null space of A and range space of A

perpendicular  range;  in  ranger  space  of  A transpose not  A perpendicular  range of  A

transpose is subset of R n, these range space of A transpose range space of A transpose

are rows space of A transpose. 

So,  this orthogonal  to null  space of A and R A, R A subset of R m null  space of a

transpose  in  R  A subset  of  R  m  they  are  orthogonal  to  each  other.  So,  these  are

fundamental subspaces associated to the matrix A. Null space of A in this theorem we

say that null space of A is range is space of A transpose and null space of A transpose is

range space of A transpose. That is null space of a matrix is orthogonal to complement of



its,  orthogonal  complement  of  its  row  space;  null  space  of  a  matrix  is  orthogonal

complement of its row space.
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So, V, if V is subspace of R n when dimension of V and dimension of V perpendicular is

n, so let us see how we is get this. V perpendicular is orthogonal complement of V and

therefore, dimension of V plus dimensions of V perpendicular, if V j subspace of R n

must equal to n. With that I would like to end my lecture.

Thank you very much.


