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Welcome to the lecture series on nonlinear programming. In the last lecture we have seen about

convex programming problems, I told you that if we have a minimizing type of object function

subject to all  constraint less than equal to type, less than equal to zero. So this we call  as a

convex programming problem if the objective function F and all constraints are convex okay. We

have also seen some examples of convex programming problem and unconstraint optimization

problem we have discussed, how we can find out optimal solution of a unconstraint optimization

problem.

And constraint optimization is with equality constraints using Lagrange function also we have

seen in the last lecture. Now in this lecture we will see KKT conditions, what KKT conditions

are and why convex programming problems are important that also we will see in this lecture.

Now if we have our equally type constraints then we use Lagrange function, I mean Lagrange

multiplier method to find out the optimal solution of that type of problems.

(Refer Slide Time: 01:37) 



But if we have a constraint optimization with inequality type constraints, then we use Karaush-

Kuhn-Tucker conditions to find optimal solutions of such problems. So consider this constraint

optimization problem with inequality constraint minimizing function f(x) subject to gi(x) less

than equal to 0, where f and gi from Rn to R are defined and assumed that they are continuously

differentiable functions okay. Now what a necessary condition, so what problem we are taking

now.
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We are taking minimizing f(x) subject to gi(x) less than equal to 0i from 1 to m okay. 
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So what a necessary condition, let x bar be a point of local minima for the problem MP, MP is

this problem at which the basic constraint qualification holds. Then there exist multipliers which

we are calling as KKT multipliers λibar I from 1 to m such that the following condition hold. So

what  are  the  conditions,  number  first  condition  is  same as  the  Lagrange  condition,  for  the

Lagrange multiplier method.

And  all  these  conditions  are  also  important  and  we  are  calling  these  condition  as  KKT

conditions, first condition is gradient f(x)bar+ Σi from 1 to m λi gradient of gi at xbar must be 0

okay and λ bar okay. The second condition is λ ibar gi(xbar) must be 0 for all i, gi(xbar) should be

less than equal to 0 for all i, this is the feasibility condition and all multipliers which are λ ibar

must be non negative for all i.

So these conditions basically  are called  Karaush-Kuhn-Tucker  conditions  or KKT conditions

okay. Here this λibar are called KKT multipliers okay in Lagrange multipliers method we have an

equality  constraints  that is  why we do not require  that λi  bar or Lagrange multiple  in those

problems are non negative here we have less than equal to type constraints so here this condition

is required that all multipliers must be non negative, okay so this is a necessary condition that if a

point is a point of local minimum then this condition must this always satisfied. Now we come to

the sufficient condition sufficient part if.
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If λ bar and  satisfy these 4 conditions okay and F and Gi are differentiable convex function thatxx

is a convex programming problem because if the function f and all gi is a convex then we call

such as problems convex programming problem and here we are assuming that function and all

constraints are convex then  is a global minimum point of the problem MP so if this conditionxx

holds for a convex programming problem then the point  and xx λ bar which we obtain solvent

these conditions.
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Is  always  a  global  minimum point  of  the  problem MP, so the  proof  is  very  simple  for  the

sufficient condition proof is very simple let us now function f is a differentiable convex function

what does it mean this means f(x) is f(x) – f ( ) is xx ≥ (x - )xx  T  ∇ f( ) and this must hold for all x xx ∈

s where s is all x ∈ Rn such that gi(x) ≤ 0 I from 1 , 2 that is a set of that is fusible set okay as the

fusible set and if f is a convex function then this means f(x) – f( ) should be xx ≥ to this condition,

this we have already discussed again gi is also convex for all (i) this means gi (x)- gi ( ) must be xx ≥

(x- )xx  T  ∇ gi ( ) and it must hold for all x xx ∈ s also.

And these condition hold it is given to us in the statement okay so λi bar are no

negative so we can multiply by Σ over here okay it will not change the inequality because they

are non negative and some from i from 1 to m so wh=at we obtain this ⇒ Σ λi bar gi (x)- Σi from

1 to m λi bar gi  ( ) should be  xx ≥ (x- )xx  T Σi from 1 to m λi bar ∇ gi  ( ) okay because  xx λi non

negative yiu can multiply by λi and add all the constraints all the m constraints so we obtain this

condition now you add 1 and 2 adding 1 and 2 it is the left hand side will be fx – f  + ∑ixx

From 1 to m λi bar gi of x - ∑i from 1 to m λi bar gi of  and greater than equal to, now whatxx

will  be the right  hand side,  you see this  term is  common in both the equation so f  – s  bar

transpose come out and in inside bracket we will be having this plus this and this from the first

equation is 0, so this will be equal to greater is equal to 0 using the first equation okay, now again

λagix, gix bar = 0 for all I so the sum will also be 0, so we can easily see that this is = 0.



Because λa bar gi  = 0 for all i then this means sum over i from 1 to m will also be 0 becausexx

each, for each 8 is 0 and now gi  is less than equal to 0 and λL > = 0 so this implies because gi xx xx

is okay it is visible okay, x so x is any point in s and s satisfying this in equality so gi of x < 0 for

all i and λi bar is > = 0 for all i this implies λi bar into gi of x is < = 0 non negative and non

positive the product is always non negative or non positive okay. So this implies ∑ also < = 0

because each term is < = 0 then sum is also < = 0 so from here we can say.

That fx – f  will be greater than equals to negative of ∑i from 1 to m λi bar gi of x and thisxx

quantity is less than equal to 0 this means negative will be greater than equal to 0 so this will be

greater than 0, so we obtained from here we obtain that f  is < = fx for every x, because s isxx

arbitrary point in s that means for every visible point x in s f  with always < = fx that means fxx

bar is a global minimum point, so what we have to that of any function f and constraint gi satisfy

these four conditions a long width f and all gi is the convex then the x bar which is obtain by

solving these condition is always be a global minimum point of this problem okay.

So there is sufficient condition and let  us discuss few examples based on this, so this is the

advantage of our application of convex programming problems because convex programming

problems make KKT condition sufficient it is because only because of convex programming

problems that is function and all gi is are convex the KKT conditions becomes sufficient okay.
   

(Refer Slide Time: 12:05)



So let us discuss our first problem minimizing f = 2x1 + x2 subject to x1
2
 + x2

2
 ≤ 4 and x1 – x2 ≤ 0,so

how to solve this problem? So this is g1,g1  is nothing but x1
2  + x2

2
 – 4 ≤ 0 and this is g2, g2  is

nothing but x1 – x2 ≤ 0, okay. So first we will see whether this problem is a convex programming

problem or  not  because then  only the  KKT conditions  will  be sufficient,  okay.  Now it  is  a

minimizing type problem and all concerns are less then equal to type.

So it will be a convex programming problem where the function and all concerns are convex, so

function is linear function so it is obviously convex okay the first constraint g1 his hessian matrix

is 2, 0, 0, so λ 1 is 2 and λ 2 is 2 you can easily see the Eigen values of this matrix is 2  and 2 which

are greater than 0, okay. λ 1 and λ 2, λ 1 >0 λ 2> 0 you read this see so it is positive definite that

means functionalistic convex and hence convex, okay.

And the second concern is the linear constrain so it  is obviously convex so therefore it  is a

convex programming problem. So let us write down all the KKT conditions and try to find out a

x-bar satisfying the KKT condition that will be a global medium point of this problem by the

sufficient KKT condition we can easily see, okay. So we will try to find try to write down the

KKT conditions what are the KKT conditions, 
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KKT conditions is  ∇ +  now here we are having two constraints so xx 2  KKT multiplies will be

involved it is λ1 ∇ g1 (xx) + λ2  g∇ 2 ( ) = 0, so what does it imply? It is you can take  or x it earlyxx xx

matters okay you can take x also that x that satisfies this condition will be the global minimum

point, so what is ∇ g(x),  it is (2, 1) + λ1 first with respect to x1 then respect to x2, λ1 gradient of

g1, g1 respective to g1 ∇g1/∇x1 is 2x1.

∇g1/∇x2 is 2x2 + λ2 it is (1, -1) = (0, 0) so what we obtain from here, it is 2 + 2x1 λ1 + λ2 = 0 and it

is  1  + 2x2  λ1  -  λ2  = 0,  so these are  two condition we obtain from here.  Now what are other

conditions? Λ1 g1 x = 0 so this implies λ1(x1
2
 + x2

2
 – 4) = 0 and λ2 g2 (x) = 0 

So this implies λ2(x1-x2)=0, again we have a feasibility condition is g1x≤0 and g2x≤0 and λ1,λ2

both must be non negative. So these are the cyclotic conditions, now how to solve this condition

let us see, now from these two conditions we see that this into this is 0 which is possible only

when either this is 0 or this is 0, okay this into this is 0 this means this is 0 or this is 0, so that

means we will be having four different conditions, four different cases.

So we will take case 1 okay, let us take case 1 when λ1=λ2=0 okay, case 2 when λ1=0 λ1 remains 0

means this condition hold and suppose this is λ2 is not 0 this is 0 may be we cannot talk about λ2

this is 0 suppose okay. Now case 3, when x1
2+x2

2=4 and λ2=0 and case 4 when x1
2+x2

2=4 and x1-

x2=0 so these are the only four cases which can be obtained from this condition okay, from these

two conditions.



Now suppose the first condition λ1λ2=0, if λ1 λ2=0 then from these two condition 2=0 or 1=0

which is not possible, so this condition is not possible okay, this condition is not possible. Now

suppose λ1=0 if λ1=0 so from here λ2 is -2 and from here λ1 λ2 is 1 which is again not possible

because λ2 will be having only one value, and that must be non negative also, so this cases also

omitted, this case is also not possible, okay.

Now take out the third case when λ2=0, λ2 is 0 and x1
2+x2

2=4 okay, so λ2=0 and this hold then

what we obtain from this condition we obtain x1 λ1=-1 and x2 λ1=-1/2 okay, now x1
2+x2

2=4 also so

when you apply this condition x1
2+x2

2=4 what we obtain, we obtain (-1/ λ1)2+(-1/2 λ1)2 should be

4, so what will λ1 from here it will be 4 λ1 will be the LCM it is 4+1 will be equal to 4 and that

means λ1 will be nothing but.
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From here what we obtain it is 5=6 λ1
2 so this implies λ1 will be nothing but ±√5/4 now λ1 cannot

be negative so λ1 will be under √5/4.  Now if λ 1 is √5/4 so what will be x1, x1 will be nothing

but -1/λ1 that is -4/ √5 and x2 will be nothing but -1/2 λ 1 that is -2 / √5. So these are the x 1, x2

we obtain from here, now we have to see that all the conditions are satisfied this point or not.

Now this condition obviously hold because x12 + x22 = 4 this condition is satisfying, so this is

holding now x1 – x2 ≤ 4 what is x1 – x2 is it -2/ √5 which is ≤ 0.

So yes this condition also hold to hence at this point all the KKT condition hold and the problem

is the convex program problem also, so any points satisfying the KKT conditions along with f



and gi all convex then that point is always a global minimum point of the problem. So we can

say that this point is a point of flow, global meaning of this example one. Now similarly let us

start to solve the next problem what will be the f here.

F is the thing but x1
2 + x2

2 – 2x1 and subject and this is minimizing okay minimizing a subject to

x1
2 + x2  -1 ≤ 0, so it is g1 to first constraint okay. So first we will see whether the objective˂

function all constraints are convex or not, so what will be the gradient of ancients matrix of f it is

2002, so it is clearly convex because λ 1, λ 2 both are two λ1 = λ2 = 2 and both are stiglicutave 0

means function is means is matrix is positive definite, hence straggly convex that means function

is convex okay.

And hessian matrix of g1 will be it is 2000, so λ1 = 2 which you get a 0 and λ 2 = 0 so this

means hessian matrix corresponding to this g1 is positive semi definite and hence convex hence

g1 is convex okay. So this problem is the convex programming problem clearly okay because

objective function f and the constraint g1 only one constraint are here, and this constraint is also

convex so this problem is the convex programming problem.

Now we will try to solve the KKT conditions and the point we satisfy all the KKT condition will

be the global minimum point of this problems so whatever KKT condition let us see again.
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Gradient of Fx + here only one constraint is here so λ1 gradient of g1 x = 0 this implies gradient

of g is to x1 – 2 to x2 + λ times gradient of j1 is to x1 and one which should be 0, 0 and this

implies  2x1 – 2 + λ x 2 x 1 0 and the second implies 2x2 + λ = 0. Now the other condition are λ1 x

g1 x should be 0 this implies λ1 x x12 + x2 – 1 = 0, next condition is g1x must be ≤ 0 this implies

x1
2 + x2 this is feasibility condition.

Now the other conditions are λ1*g1x should be zero this implies λ1*x1
2+x2-1=0 next condition is

g1x must be lesser equal to zero this implies x1
2+x2it is  a feasibility condition this must hold and

λ1must be non negative so these are the four conditions KKT conditions okay. Now again from

this condition we will having two cases so case 1 when λ1= 0 and case 2 then x1
2+x2-1+0 now if

λ1=0 if λ1=0 or this λ1 okay this is λ1so if λ1=0 this means x2=0 and when λ1=0 here this means

x1=1 and 1, 0 if you take 1,0 1, 0 1 and 0 is less equal to 0 which is less equal to 0 equality holds.

So this point 1, 0 set is constraints so this is the point of local minima we are interested to find

out one solution satisfying all the constraints so this case is satisfying this cases giving us a one

point with satisfy all the constraints okay so need to solving other cases okay so 1, 0 this is the

point of global minima so let us how using KKT conditions we can easily solve find out the

global minimum point of a profit.
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Now we doubt the convexity assumptions on f and gi of that KKT conditions are not sufficient

for  point  bar  to  will  local  minimum or  global  minimum this  conditions  are  must  convexity

assumptions on f and gi all for all i they are a sufficient conditions okay without these conditions

we can’t say there are point x bar to be a local minimum for example we have this problem okay 

This is minimum of f= -x2   subject to what are the conditions, conditions are x1
2+x2

2-4 and –

x1
2+x2<=0  so the first constraint is g1 which is x1

2+x2
2-4 <=0  and the second constraint is g2

which is –x1
2 + x2<=4 you can easily see when you find ∆2 of g2   is -2, 0, 0, 0 so here λ1 is -2 for

this matrix hither values is -2 which is less than 0 and for second matrix is 0 

A second value is 0 or you can use tet test of principle minors to find out the to check the definite

set of matrix now λ is negative and second is zero this means this matrix is negative sign definite

and this is g2 is our concave function so this problem is not a convex programming problem

okay.

Now if  we write  the  KTT conditions  for  this  problem to  see  what  are  the  KTT conditions

gradient of f that is 0-1 + λ1 times gradient of g1 it is 2x1 2x2 + λ2 times. Gradient of g1 that is

2x1 2x2 + γ 2 gradient of g2 - 2x1 1 must be (0, 0) so this implies 2x1 λ 1λ2 must be 0 and – 1+ 2x2 λ

1 + λ2 must be 0 and λ 1 times first constrains, λ2 times second constrains must be 0 and fusibility

condition x12 + x22  ≤ 4 - x12 + x2 ≤ 0 and multiplied must be negative. So these are the KKT

conditions. Now if you see that 0.0, 0 that x1 x2 0, x1 0 satisfies this condition, x2 0 that means



λ2 = 1 okay. Now x1 0 and x2 0 that means λ 1= 1, λ 1 = 0 because when you put 0, 0 then this is

known as 0, so this must be 0.

0 and 0 satisfying this condition 0, 0 ≤ 4, 0 0 ≤ 0 and 0 1 satisfies this constant also, so 0, 0

satisfying all the KKT conditions but still 0,0 is not the point of local or global minimum why?

This we can see graphically, you see what is the, what is the constrains? The first constrains is

the region inside the circle, here is the circle x12 + x22 = 4 this is x1 and this is x2 and when you

take 0 and 0 satisfies this constrains, so shade this towards inside the circle okay.

Now the 2nd constrain is the parabola x12  = x2 that is this constrain and when you take appoint

say , it is 2, 0 if you take -4 + 0 ≤ 0 it holds that means the shade is out of the parabola, so what is

the common region, this is the common region these are the feasible region. Of course it is not

convex that means the constant are not convex constrained okay that is clear. Now if you take

this point 0,0 it satisfies all the KKT conditions but it is not a neither a global minimum point

because you can see that you have to minimize the – x2 or maximize of x2 and x2 is maximum at

this point or at this point, so maximum is here or here, so this point cannot be a minimum global

minimum point of this problem.

So why it is not a global minimum, because the convex minimum condition is not satisfying

okay, so what I want to say that if KKT condition holds at a point it does not mean that point is

the  point  of  global  minimum  because  for  that  point  to  be  global  minimum  beside  KKT

conditions convexly of f and GI is required is must okay. So that is all for this lecture thank you. 
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