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So welcome to lecture theories on Non linear programming, we have seen that what convex 

functions are and also some of their properties, now we will see some more properties of convex 

functions. So in our last classes we have seen that we can prove our function to be convex 

functions simple by definition of the convex function, or we can use the definition of epigraph 

because a function is a convex function if and only if its epigraph is a convex set or if function is 

once differentiable on a open convex subset S(r) then f is a convex if and only if f(x1) – f(x2) ≥ 

x1 – x2 
T 

gradient of fx2 okay. 

 

So these three properties we have defined for the convex function, now we will see that if F 

function is twice differentiable then what is the property for convex function how we will see F 

function is convex or not okay. So before studying twice differentiability of a convex function 

we will see that definiteness of a symmetric matrix H so a symmetry matrix H of order n x n is 

set to be positive have a definite if x
T 

H(x) ≥ 0 for all x in R
n
 negative semi definite. 
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If x
T 

Hx ≤ 0 for all x in R
n 

, positive definite if this inequality hold as strict inequality for x in R
n 

, 

x should not equal to 0 and it is negative definite if this inequality for negative semi definite hold 

as a strict inequality x should not be for all X in R
n 

and x should not equal to 0. So what these are 

let us discuss this by few examples. 
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Now suppose we have this matrix H. 
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What is matrix H is, this is 1, -1, -1, 1 they are symmetric matrix and this I have in order to cross 

2, now let us find x
T 

H(x) since this is of order 2 x 2 so x
T 

will be x1, x2 it is 1, -1, -1, 1 and x is 

x1, x2, okay we are taking x as x1, x2. So x
T 

will be x1, x2 as a row vector H is this matrix and X 

is a column vector now you multiply these3 so what we obtain, when you multiply these 3 so it is 

x1 – x2 it is –x1 + x2 and this is equals to x1(x1 – x2) + x2(-x1 + x2) = x1
2 

+ x2
2 

-2x1x2 and this is (x1 

– x2)
2 

.    

 

And of course this quantity is ≥ 0 for all x1, x2 okay so we say that this matrix H is positive semi 

definite, okay. This matrix excess positive semi definite since there exits some non zero X also 

where it is equal to 0 like 1, 1 = 0. So you cannot call it positive definite because a positive 

definite as you see in the definition positive definite this must be greater than 0 for all x in R
n 

and 

x should not equal to 0, okay. 

 

This must be positive strictly greater than 0, however this is ≥ 0 and there are non zero x where it 

holds and equal to 0, so therefore it is not positive definite however it is positive semi definite 

okay.  
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Now we take another example you take identity matrix of order 2 x 2, I(1, 0, 0, 1) and when you 

take x
T 

Ax so it is nothing but x1
2 
+ x2

2 
you can simplify this it is strictly return 0 for every x

n
 or 2 

because it is 0 only when x1, x2 both are 0 and x should not equal to 0 so that is not here so that 

means it is strictly return 0 so therefore this matrix are positive definite matrix. Now from these 

definitions. 
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You can easily see that if a matrix H is positive semi definite then –(H) will be negative semi 

definite because when you multiply with -1 with both the sides then –(H) will be definitely 

negative semi definite and similarly if a matrix H is positive definite so –(H) will be negative 

definite because this inequality hold. 
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So that is there in this note symmetry matrix is negative semi definite or negative definite if and 

only if – (H) is positive semi definite or positive definite respectively, okay. 
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Now how can we check whether the given matrix is positive definite positive semi definite 

negative definite or negative semi definite so we have two tests first is Eigen value test okay now 

since the given matrix A is real and symmetric matrix so we know that if a matrix are real and 

symmetric matrix then all its Eigen values are real so it is of order n x n this means it will be 

having n number of Eigen values λ1, λ 2 and λ n and all will be real. 

 

Then A is positive definite if and only if all it Eigen values are strictly kept in 0 okay, you find 

all the Eigen values of the real symmetric matrix A if the Eigen value all the Eigen values are 

strictly kept in 0 the we say that it is positive definite, positive semi definite if and only if all 

Eigen values are ≥ 0 negative definite if and only if all Eigen values are strictly less than 0, 

negative semi definite if and only if all λ I are ≤ 0.  

 

And indefinite okay if and only if some λ I >0 and some λ g <0, now finding an Eigen value 

always is not a simple task if we have a matrix of order of 4 x 4 or 5 x 5 then always finding 

Eigen values of a matrix to check the definiteness of the symmetric matrix, matrix A is not an 

easy task, so we have another test also which we call as principle minor test, now what it is? First 

we understand what principle minor is then we go to a test.  

 



That how using this test we can check we can find whether a matrix A is positive or negative 

definite okay. So a minor of matrix A of order K is principle we which you call as principle 

minor if it is obtained by deleting (n-k) rows. 
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And (n-k) columns you delete n-k rows and n-k columns from n x n matrix you got a matrix of 

order k x k that determinant of that matrix called principle minor matrix, okay. The leading 

principle minor (A) of order K is the minor of order K of n by deleting the last and –k rows and 

columns we will understand this by an example okay what this means. 
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Let us understand this by an example. 
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Suppose you have matrix given here A = 1, 2, 3, 4 if you delete it is 2 x 2 okay and you have to 

delete n-k rows and columns from the last okay now n is 2, suppose k is in this case is either 1 or 

2 okay suppose k is 1, 2-1 is 1 so you delete last one row and one column you delete last one row 

and one column so you will left with D1, D1 means precise minor of order 1 which is 1 which is 

this element. 

 

Now when you take D2, D2 is simply determinant of n – you delete you do not delete any rows 

and columns 2-2 is 0 so that means the full matrix 2, 3, 3 ,4 that is nothing but 4 – 6 which is -2 

so this is how we can find the determinants of leading principle minors okay. So here decay 

represents leading principle minor of order k okay. Suppose you have a matrix B of order 3 x 3 

you can take any matrix 1, 2, 3, 0, 4 , 2, -1, 2, 3, 2, 4. 

 

Suppose you have this matrix, now suppose you have this matrix B so what D1 means, D1 means 

you start from the first element and take some determinant of order 1 x 1 okay so that is one 

only, now D2 is simply you start with this element take the matrix of order 2 x 2 and take the 



determinate so that is 1, 2, 0, 4 which is nothing but 4 and D3 is nothing but determinant of 3 x 3 

matrix which is itself that is 1, 2, 3, 0, 4, 2, -1, 2, 4. 

 

So this we can find this will be D3 so that is how we can find out the principle the leading 

principle minors okay. Now finding how then finding leading principle minors how can we 

check whether a matrix is positive definite negative definite or semi definite, so let us see the 

result here let A be a symmetric n x n matrix. 
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Then A is positive definite if all the leading principle minors all the matrix A are strictly greater 

than 0 okay. It is positive semi definite if and only if D1 is strictly greater than 0 and all other 

principle minors are ≥ 0 it is negative definite if and only if D1 < 0, D2 > 0 that means -1
n 

Dn is 

strictly greater than 0 and negative semi definite if and only if D1< 0, D2 ≥ 0 and so on such that 

this quantity is greater than equal to 0, okay. 

 

We have the alternate signs in negative definite because of matrix if a matrix A is negative 

definite that means negative of A is positive definite if a matrix A is negative definite this means 

negative A is positive definite and what is the determinant of negative of A that is nothing but. 



-1
n 

determinant of A that we already know by the properties of determinant okay, now D1 is of  

order 1 x 1, so it will be negative because we substitute n = 1 here  and D2 is of order 2 x 2. 

 

So it will remain positive, okay. And D3 is of order 3 x 3 and when you substitute n = 3 so it will 

become negative, so from here we can conclude that if we have positive definite that is all plus 

leading plus or minus are strictly greater than 0. Than for negative definite we have an alternate 

signs, okay. 
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Now let us try let us see some examples based on this, we take the definiteness of a matrix A 

now suppose Q is a matrix and Q is given by. 
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Is 8, 4, 4, 2 so what will be the D1 here, D1 is 8, 1 x 1 where is strictly greater than 0, what s D2? 

D2 is determinant of 8, 4, 4, 2 which is 16 – 16 which is 0 so D1 is strictly greater than 0 and D2 = 

0 that means by this test what we can say by this test we can say that it is positive semi definite 

because D1 is strictly greater than 0 and D2 ≥ 0 so we can say is a matrix q is this implies matrix 

Q is positive semi definite, okay. Now we take another example suppose we have matrix A here 

okay. 
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Now what is matrix A, you can easily see the matrix A is 3, 0, 3, 0, 1, -2, 3, -2, 8 now when you 

take D1, D1 is the leading principle minor of order 1 x 1 which is 3 and it is strictly greater than 0 

D2 is leading principle minor of order 2 x 2 so that is determinant of 3 is 0, 0, 1 which is 3 only 

and greater than 0, now D3 is determinant of full matrix A which is 3 again and it is strictly 

greater than 0. All the leading principle – R is strictly greater than 0 this means matrix A is 

positive definite, okay because. 
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Of this listen it positive definite if and only if all principle reading ± S strictly greater than 0. 
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Now we have the result for the convex function okay we understand what causes semi definite or 

positive definite means, now we can state a result for a convex function. Let S be a non empty 

open convex subset of R
n 

and S is a function from S  R be twice differentiable on S, okay. 

Then F is a convex function on S if and only if the Hessian matrix which is gradient square f(x) 

is positive semi definite for all F belongs to S, so this is Hessian matrix we have already defined 

so F is a convex function. 
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On S if and only if hessian matrix of F on S is positive semi definite on S so now they have to 

show that if F is a convex function then this is an hold and if this is set old then it is a convex 

function, so let us start to prove this result. So let F be a convex function on S so we have to 

prove that wave function is twice differentiable, now the hessian matrix is positive semi definite 

that means we have to show that for any x, x
T 

gradient square of f(x) x > 0 for all x in s, this we 

have to prove, okay. 

 

Because we have to show that this is a positive semi definite okay. So let x1 belongs to s now 

since s is an open convex subset of R
n
 if then for any given x in R

n
 their exist some λ bar return 0 

such that x bar + λ x will definitely belongs to s for λ between λ bar and 0 you see that s is an 

open convex subset of R
n
 okay. And x bar is a some fix point in s okay, now for if this is an open 

convex subset of R
n
 so for any given x you take any arbitrary point x in R

n
 there will always 

exist some λ bar. 

 

No matter how it is small it may be but there will always with some λ bar such that this point 

which is x bar + λ x will definitely belongs to s for λ between 0 and λ bar because S is a open set, 

okay. 

 



 

 

Then for the small value of the λ this x bar + λ x will belongs to S. Now sense the f is a convex 

function so below that f(x ̄+ λ f(x ̄)= f(x ̄+(λ x)T ∆ f(x ̄). because if function is convex this means 

f(x1)-f(x2)>=(x1-X2)
T
 ∇ +(x2) for all x1,x2 in S. this way already seen that is f is a convex function 

then (x1)-f(x2)>=(x1-X2)
T
 ∇ +(x2) will satisfy the property all x1, x2. Now suppose this x1 and 

this is x2 this belongs to S and this is belongs to S.  
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So these will volt this property will volt this also because f is a convex function. So f of this 

equal to f(x ̄) so this x1 and this is x2 plus x1-x2 which is λ x ∇f(x2) okay. Then this is not equal 

this is a grater equal to okay f is a convex function. Now since f is a twice differentiable for all 

points in S. So we can apply a definition of twice differentiability. So by twice differentiability 

what we obtain f (x ̄+λ x) will be equal to f(x ̄+(λ x)
T
+ ½( λ x)T∇ 

2
 f(x̄) λ x + β (λ x, x̄) ІІ λ x ІІ 2 

.  
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This is the definition of twice differentiability of f okay now when you take this quantity when 

you apply this condition in this expression, expression 2. So what we obtain now we are this 

telling to 0 as λ =10 to 0. Okay this is by the definition of twice differentiability of f and x part 

okay. So now you applied the definition- 1 condition-1 on this expression. So what we obtain so 

this implies from 1 and 2; that 1/2 λ
2
 xT ∇2

 f(x̄)x+ λ
2
 ||x2>= 0.because this quantity when you 

take on  the left hand side is grater or equal to 0 okay.  

 

Now you can divide by λ2 both the sides what will obtain we obtain 1/2x T ∇2
 f(x ̄)x +β(λ x, x̄) λ2

 

||x2|| >= 0 okay. Now take λ 0, so this quantity β(λ x, x̄) 0? So this implies x ̄T∇2
f(x)x ½ will 

return equal to 0. Because when you take λ 10 to 0 both the side this will taking to 0 okay. 

And this is 0, so this quantity will return equal to 0. So this implies x
T
 ∇2

 f(x̄) x >= 0 and this  

∇2
f(x) is positive semi definite on S. if it is positive at x ̄€S you can vary x ̄ so we can get that this 

should met the positive semi definite on S. that is for every x in S. so this is how we can obtain 

that if f is a convex function. Then it we should matrixes is positive semi definite okay. Now we 



will try to prove the convex part of this theorem, convex part means assume that the hessian 

matrixes is positive semi definite on S. and we will try to obtain that the function is a convex 

function. So by the mean value theorem, we have to plan mean value theorem function is twice 

differentiable. So it is f(x1)-f(x2) = f(x2)+(x1-x2)
T
 ∇ f(x2)+1/2(x1-x2)T ∇2f(x2)(x1-x2) you can take 

x^ here x^ is nothing but convex the combination of  (λx1 + (1-λ)x2), λ€(0,1).  
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Is where the mean value theorem function f, the function twice differentiable. Now it is given to 

us that hessian matrixes positive semi definite. This means y
T
 ∇f(x)y>=0  ¥ every y€Rn. This 

means this x cap is in R because x is a convex set. And this is an any point in Rn. So since this is 

an hessian matrixes positive semi definite so this quantity (x1-x2)
T
 ∇e f(x^)(x1-x2)>=0. Because 

this is some point in R
n
 and this is in S. And hessian matrixes positive semi definite on S. so this 

quantity will be getting equal to 0. Now this quantity return equal to 0 means  f(x1)-f(x2)-(x1 

x2
T ∇ f(x2) >=0. So this  f(x1)-f(x2)>= (x1-x2)

T
 ∇ f(x2) so this  f is a convex x function on S.  
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 So that is how we can show. That f is convex if and only if is a hessian method -positive semi 

definite on S okay. We have various examples, now to illustrate to see. Suppose function is from 

RR and f(x) =x
2
. Now function is from RR what the hessian matrix of this function is. 

Hessian matrix a simply second irrigative S. so the first irrigative is f(x) =2x, and second 

irrigative is f(x)=2>0.that means positive semi definite. And that means function is convex okay. 

Now similarly you take f is equal to suppose e
x  

, x€ R, you take the first irrigative f
1
 = e

x  
second 

irrigative again to e
x  

>0 ¥ x € R. for that means the function is convex function okay. 
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 In fact these are strictly convex, because if hessian matrixes is strictly I mean hessian matrixes is 

positive definite. Then function is strictly convex okay, because if a function is hessian matrixes 

is strictly positive definite. Then the function is strictly convex. We have a result it is okay. 

Similarly suppose you have f=x1
2 
+x2

2  
. so you should find hessian matrixes function.  

 

Hessian matrixes nothing but del
2
 f/del x1

2
 del 

2
 f upon del x1 x2 del

2 
f  upon del x2 delx1 del

2
 f 

upon del x2
2

 and that is nothing but when you take the irrigative the f(x1) it is 2 0 0 2  so you 

should check whether hessian matrixes is positive semi definite or not we will find leading will 

to minus D1 is 2 which is returns 0, and D2 is 4which is again returns 0. So that means if is a 

positive definite that means function is technique convex okay. So we have the same results for 

strictly convex function also.  
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That if a hessian matrix is definite then f is strictly convex on S. but the convex may not be true. 

Like in this theorem we have if and only if condition. That is a function in a convex function if 

an only if. The hessian matrixes is positive semi definite for all x in S. but for strictly convex we 

don’t have a if and only if condition. We are only the condition that if hessian matrixes is a 

positive definite. Then f is strictly convex.  

 

So why the convex is not true we have a convex example like ax has to power 4. When you take 

this is graphically you can see that is the function strictly convex okay. But when you take the 

second irrigative of this function. This is 12 x
2
 we can easily check. And which is not positive 

definite for x = 0. So convex may not be true okay. Now let us check solve few examples, using 

twice differentiability of a function f to see whether the function is convex or not okay.   
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Now for concavity if you want to see the concavity the function is a concave function on a if and 

only if hessian matrixes negative semi definite on S okay. The same line e can obtain the proof. 
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Now you suppose the first example f(x1 x2) which is given as 4x12 +x22 + 4x1x2 . now we will 

obtain hessian matrixes of this function what are the hessian matrixes of the function it is del2 

upon del x12 del2 upon del x22 del2 upon del x1del x2 del2 upon del x22.  

 

What it is it is 8 4 4 2. And what is D1=8<.0, D2=16-16=0, so that implies this del2 f is positive 

semi definite and that implies f is a convex function. Of similarly you can check for second 

problem is nothing but which is g is equal to x1 x2 + 2x12 +x22 +2x32-6x1x3 okay. If you 

calculate hessian matrixes of g, what are the hessian matrixes of g, first is ∇2 
g (∇ x

2
) which is 4 

then ∇ x
2 

g(∇ x1 ∇ x2) which is 1 and then ∇ 
2 

f(∇ x1, ∇ x3) which is -6 now since it is a 

symmetric so these terms will come here now ∇ 
2 

f g  ∇ x2
2 

which is 2 and x2, x3 which is 0 

again symmetric this will come and what it is ∇2 
g upon ∇ x3

2
 from here it is 4. 

 

So this will be this matrix, now what is D1?, D1 here is 4 strictly return 0 what is D2, represent 

leading this is minor of order 2 x 2 which is determinant of 4, 1, 1, 2 which is 8 – 1 is 7 strictly 

written 0 again, D3 determinant of 3 x 3 which is 4, 1, -6, 1, 2, 0, -6, 0, 4 when you take this 



determinant so this is nothing but 4(8 – 0) – 1, 4 (-6) and it is 12, it is 12 – 4 – 72 which is 

negative it is started to so it is negative, okay. 

 

So one is positive, positive and negative so that means matrix is indefinite hence G is neither 

convex nor concave so in next class we will see that how can we solve some problems if it is a 

convex programming problem, so thank you. 
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