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So welcome to the lecture series on nonlinear programming we have already seen what convex 

functions are and we have seen some of the important properties of convex functions, now we 

will see some more properties of convex functions, so epigraph we have already defined what 

epigraph is epigraph is nothing but epigraph of function f. 
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Is nothing but all those xα such that x belongs to s α is any real number and f(x) ≤ α this is what 

epigraph means epigraph is epigraph or function f is nothing but all those xα such that x belongs 



to a set s α ∈ R and f(x) ≤ α and it is nothing but a subset of RN + 1 that we have already seen 

because this s belongs to RN and α ∈ R so this is nothing but this tip late will belongs to this 

toper will ∈ RN + 1. 
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Now to show now next theorem states that that if S be a convex subset of RN and f is a function 

from S to R then F is a convex function on S, if and only if it is epigraph EF is a convex set. So 

this is the next theorem of the result that F is a convex function on S f on S if and only if its 

epigraph is a convex set, now how to prove this let us see okay. 
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So f is a convex function on S, if and only if it is epigraph is a convex set, so this is to show now 

how to show this, so first we will take that f  is a convex function and then we will try to show 

that except a graph is a convex set and then we will take that is epigraph is a convex set and try 

to show that this function is a convex function, now the first part is first is let f be a convex 

function okay on S, now since f is a convex function this means f(λx1) + 1 - λx2 ≤  λ f (x1) + 1 -λ 

x2 f(x2) for all x1 x2 in S and λ between 0 and 1 okay. 

 

This is by the definition of the convex function that f is a convex function if f (λx1) + 1λx2 ≤  

2λf(x1)+ 1 -λx2 and this must hold for all f1 S2 in S and λ between 0 and 1, now what we have to 

show we have to show that if f is a convex function then it is epigraph is a convex set to prove 

this take two arbitrary points in the epigraph in the set that is epigraph and try to show that the 

convex linear combination of those two point is in s okay. 

 

So let x1, α1 and x2, α2 are in epigraph of the function f because the points which are in epigraph 

are like this x , α types so it will be x1, α1 and x2, α2 let us suppose it belongs to this epigraph so 

it means it means that f(x1) ≤  α1 and f(x2) ≤  α2 by the definition of epigraph okay, now take the 

convex linear combination of these two points okay, the converse linear combination will be 



nothing but λ or x of first point and 1 – λ times of second point and say it is some x, α for λ 

between 0 and 1 okay. 

 

So let us suppose the converse near combination we represent this by x , α so what will be x will 

be λx1 λx1 + 1 – λx2 and what will be α will be λα1 + 1 - λα2 now to show that it is a convex set 

we have to simply show that x ,α belongs to epigraph that is ef okay that means we have to show 

that f(x) ≤  α so take f(x) and try to show that it is ≤ α so what will be f(x) will be nothing but 

f(λx1) + 1 -λx2 and by the definition of convex function it is ≤ λ f(x1) + 1 - λ f (x2) and f(x1) ≤  α1 

and f(x2) ≤ α2 because these points are in the epigraph of f so this implies that is ≤  λ α 1 + 1 - λ 

α2 because these λ n 1 - λ are non-negative values they are lying between 0 and 1 okay. 

 

So and this is nothing but α this is nothing but α so we have shown that f of x ≤ α, so this means 

if f of x ≤  α this means x , α will belongs to the epigraph, so this implies x , α will belongs to 

epigraph of the function f and that means epigraph is a convex set okay, so in this way we can 

we can say that a function is a convex function that is then its epigraph is a convex set, now we 

will do that we will try to prove the converse part we will take that a epigraph is a convex set and 

we will try to obtain this function f is a convex function. 
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Now let us see so now for converse part let epigraph of the function f be a convex set okay, now 

we have to show that functions of convex function so if it is epigraphs the convex function take 

two arbitrary points now x1 , f(x1) and x2 , f(x2) will definitely belongs to epigraph of f this is 

because it is α it is α1 now f(x1) ≤ α this is obviously true because equality holds okay if it is α 

f(x1) ≤ α α is f(x1), f(x2) ≤ f(x2) it is obviously hold. 

 

So these point definitely belongs to a epigraph of the function f now it is given towards there the 

epigraph is a convex set so this means this implies λ times the first point and 1 -λ times the 

second point must belongs to the epigraph for λ between 0 and 1 okay so this implies λx1 + 1 - 

λx2 and λf(x1) + 1 λf(x2) must belongs to the epigraph of the function f okay, now it belongs to 

the epigraph means what if x , α belongs to the epigraph this means f(x) ≤ α so this is this is 

some x and this is α okay. 

 

So this x ,α belongs to the epigraph means f(x≤ α so f(x) is f(x) x is this quantity this quantity 

this term ≤ α and α is this quantity λf(x1) 1+ 1 - λ f(x2)  and this implies that f is convex is the 

convex function on s because x1 and x2 or any arbitrary points this means this is it hold for any x1 

and x2 and hence function is a convex function on this s so in this way we can say that if 

epigraph or function is a convex set then also we can say that a function is a convex function 

okay. 

 

So if we have to show to the function is a convex function either we use our definition of a 

convex function which is f(λx1) + 1 - λx2 ≤ λ f(x1) + 1- λ f(x2) or we can also find the epigraph 

and try to show that epigraph of the function as is a convex set okay, now similarly using hypo 

graph I hypo graph is a hypo graph or function f. 
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Is nothing but all those that is α so the S ∈ s α ∈ R f(x) f(x) ≤  α so this is hypo graph function f 

so if S is a convex set and f is a function from S to R then f is a concave function on S if and only 

if it is hypo graph is a convex set so the proof of this can also be obtained on the same lines on 

the lines of the proof which we did earlier okay so in order to prove that a function of a concave 

function find it is hypo graph and try to show their a hypo graph of the function f is a convex set 

okay. 
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Now we have a result now let fi be a family of functions which are convex and bounded from 

above on a convex set S subset of R
n
 then the function which is given by a supreme of fi is also a 

convex function, so let us try to prove this so for example suppose you are taking maximum of x 

and x
2
 okay. 
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Now both functions are convex x is a linear function it is convex a function from R to R x ∈  R 

x
2
 is also a convex function that we have also seen that x

2
 is a convex function and maximum of 

two convex functions also convex okay that we can easily show we can easily see graphically see 

x, y = x is this line okay and y = x
2
 is this intersection point okay now what is the supreme of this 

function supreme of this function is if it is function from say from 0 to 2, so 0 to 2 it is nothing 

but from here to here this is the maximum value when it is 1 okay and from 1 to 2 this is the 

maximum value this curve. 

 

So this shaded line and this is the maximum or the function from 0 to 2 say a 2 is here okay, say 

2 is somewhere here so the maximum of maximum of x and x 
2
 is this function now if we take 

the epigraph of this function, so f is rap of this function is nothing but this set and which is 

convex and since it is convex, so we can say by the depth by the theorem that the concerned 

function if it is a function f then this function is a convex function. 

 

So this is the theorem that the supreme of fi is also a convex function the proof is very simple can 

be obtained it is start to obtain the proof. 
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Now fi are convex fi are convex functions on S for all I so this implies because we know a 

theorem that a functions are convex then the epigraph is a convex set so this implies e(fi) are 

convex set for all i, and since it is a convex set, so this means intersection is also a convex set 

because intersection of any number of convex set is also convex okay, now let us see the 

intersection of e(fi) what this represent this is nothing but all those x α such that x ∈ s α ∈ R and 

fix ≤  α for all i, a is con is a convex set the intersection of e(fi) is a convex set. 

 

What does intersection represent intersection of e(fi) represent all those xα  so S ∈ S α ∈ R and 

fix ≤ α for all i, because it is the intersection that means for all i, is a convex set, now if it is true 

for all i, this means it will be equals to it reduced equal to supreme of i,  also supreme i,  does not  

goes to α is also a convex set okay and this is nothing but is requests to all those xα so that x ∈ S 

α ∈ R and supreme of fi is nothing but f(x). 

 

So it is f(x) ≤ α is a convex set, so this means this means epigraph of f where f is nothing but 

supreme of fi is a convex set and since epigraph of f is a convex set this means f is a convex 

function convex function on S okay because we know that if epigraph of function is a convex set 

this means the function is a convex function and since epigraph of f is a convex set, so this 



implies the concern per a function the corresponding function is a convex function and what is 

the corresponding function it is nothing but supreme of fi 

 

So hence we can say that if we have a collection of a convex functions their supreme of the 

convex functions is also convex okay, now let us define differentiable convex functions. 
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If let s be a function from S to R be differentiable at (x̅) ∈ S where S is the open subset of R
n
 for 

x + (x̅) ∈ S f( x) + (x̅) = f(x̅) + x
T 

gradient of f(x̅) + α is a function of (x̅) and S and norm of x 

where this term will tend to 0 as x tending to 0, so this is how we define a function is once 

differentiable at (x̅) ∈ S okay what is great of f(x)bar gradient of f(x̅) is a vector basically. 
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So gradient of f(x̅) is nothing but ∇ f / 𝛿 x1 𝛿 f / 𝛿 x2 and 𝛿 f/ 𝛿 x so this is greater of f(x̅) okay 

now if a function is twice differentiable at (x̅) then f ( x) + (x̅) is = f(x)  + x 
T 

gradient
  
of f(x̅) + 

half of this term + β (x̅) x norm of x
2
 we are this term0S as extending to 0, so this is how we can 

define the function f a function is once or twice differentiable at (x̅) okay now what is what is 

gradient
 
square

 
 of f(x̅) that is defined this thing also gradient square

 
 of f(x̅) is nothing but a 

matrix. 

 

 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 19:02) 

 

 

 

And we call it Hessian matrix of F at (x̅) and what it is it is nothing but δ
2
 of upon δx1

2
 δ

2
F upon 

δx1 δx2 and so on δ2F upon δx1 δ xn then δ
2
 F upon δx2 δx1 δ

2
 F upon δx

2
 and so on. Δ

2
 F upon 

δx2 δxn and it is δ2 F upon δxn δx1 δ
2
 F upon δxn δx2 and so on δ

2 
F upon δx and squares, so this 

is how we can define our n cross n and cross an symmetric methods a symmetric matrix which 

we call as he Hessian matrix set of f at (x̅) okay this is gradient square of F at (x̅). 
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Now we have our next result for a convex function which is if f is a function from S to R which 

is differentiable function on a open convex subset S of RN, then the function f is a convex 

function if and only if f of x1 – f x2 is greater than equals to x1 - x2
T
 gradient of fx2 and this 

should hold for all S is belongs to S, so now let us start to prove this result so what this result is 

basically. 
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This is f(x1) – f(x2) is greater equal to x1 – x2
T
 gradient of fx2 and this should hold for all x1 x2 

belongs to this, and what we have to show that f is the convex function on S if and only if this 

happens okay. So first let us assume that f is a convex function and we will try to show that this 

result hold okay, so first let f be a convex function one is okay. Let f be a convex function on S, 

so convex function means f of λx1 + 1 – λx2 must be less than equals to λ f x1 + 1 - λ f x2 for all 

S1 S2 in S and λ between 0 & 1okay.  

 

Now what is f of λx1 + 1 - λx2 it is nothing but S can be written as f of λx1 – x2 + x2, you can take 

this λ common from these two terms it is λ of x1 - x2 + x2, now it is given towards that function is 

differentiable, differentiable on an open convex set S of R and this means differentiable for all 

points in S okay. So if it is differentiable this means this means this means the first. 
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Result holds okay, so let us try to use this result. 
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So here suppose this is x this quantity is x and this is x bar okay so you use this result it is x it is 

(x̅) so it is equal to f of (x̅) + x, x
T
 gradient of fx2 + α times (x̅) and x and norm of λx1 - x2. Okay 

this is simply by this result okay, and where this limit tending to 0 where as limit of λx1 - x2, x2 

will be equal to 0 as λ tending to 0 here. So f of x + (x̅) is equal to f of (x̅) + (x̅)
T 

fx gradient of 

(x̅) + α function of (x̅) and x and norm of x okay, so now this is equals to now this quantity from 

this expression is greater than is less than or equal to λfx1 + 1 – λf extreme okay. 

 

From this expression this quantity is less than equal to means this code this is equal to this means 

this quantity expression is less than if I show this quantity, so what we obtain from here this 

implies f of x2 + λ times x1 – x2
T
 because λ is a scalar we can take it out and it is gradient of fx2 + 

α of α function of λx1 - x2, x2, now λ can take out because it is between 0 & 1 and norm of x1 - x2 

which is less than or equal to λfx1 + fx2 -  λfx2  you multiply fx2 here now this f (x2) and f (x2) 

cancels out from both the expressions you divide by λ throughout so what we obtain we obtain 

that x1 – x2. 

 

Whole transpose gradient of fx2 + αλx1 into x2, x2 norm of x1- x2 is less than equals to fx1- fx2 

okay, now as now take λ 10 to 0 both the sides if you take ramp 10 to 0 both the site or this term 



will turn to 0 if the taking λ10 to 0 implies x1 - x2 whole transpose gradient of fx2 is less than or 

equal to fx1 - fx2 okay, so we have proved the first part so we have taken data to the convex 

function and we have obtained net f of x1 - fx2 Is greater than equals to x1 – x2
T

 gradient fx2 okay 

now we will try to show the converse part okay. 

 

So in the converts part we will suppose at this condition hold and try to obtain if the function is a 

convex function. 
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So let x = λfx x1 + 1 – λx2 we are λ between 0 and 1 now this inequality hold for every x1 and x2 

and x is a convex sub set of RN okay. So this will hold for x1 and x also so if we apply for x1 for 

x so this will be greater request to x1 - x
T
 gradient of fx okay because we have supposed that this 

condition hold this condition hold means this inequality hold for all fx1 x2 in S and we have to 

show that the concern the corresponding function f is the convex function okay, so we have so 

this result will hold for xy and x also.  

 

So we have applied this result for xy and x so we obtain this thing so what it is equal to it is 

equal to it is equal to x1 – x, x or – x will be nothing but 1 - λ times x1- x2
T 

gradient of f suppose 



it is a first expression, now the same result will also hold for x2 and x okay. Because it is holding 

for all x1 and x2 in S and this is in S because S is a convex set okay, so fx2 – fx again will be 

greater than equal to (x2 – x)
T 

gradient of f of x, now what is x2 – x when you compute x2 – x so 

it will be nothing but it will be nothing but x2 - x will be nothing but - λ times x1 -  x2. 

 

Whole transpose gradient of effects okay, now we have to obtain that we have to derive that 

function is a convex function that means f of λx1 + 1 – x2 is less than equals to λ fx1 + 1 –λx2 is 

fx2 so we have to obtain that result so you multiply this with λ and this with 1 – λ okay multiply 

1 with λ and 2 with 1 -  λ,  and add them so what we obtain what we obtain we get λ of fx1 -  λfx  

from this side + 1 – λfx2 – 1 – λfx is greater than equals 2. Now when you want apply this with λ 

and this with this is λ this with 1 – λ and adds them, so both things will cancel out so we will get 

0 on the right hand side okay. 

 

So what we obtain from here this implies λfx1 + 1 – λfx2 will be greater than or equals to λfx and 

λfx will cancel out, so this will be written goes to fx and x is nothing but the converse near 

combination of x1 x2 which is nothing but is equal to f of you substitute the value of x and x as 

this quantity, so it is λx1 + 1 – λ x2. So hence we have obtained that f of λ x1 + 1 and λx 2 is less 

than or equal to λ fx1 + 1 – λfx2 this implies f is a convex function okay. So we can easily see 

that if f is a convex function. 
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 Then f of x1 – f of x2 will be getting close to x 1 - x2
T
 gradient of fx2, now what this expression 

geometrically indicates, let us see okay.  
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Let us see what this what this expression geometrically indicates, so you draw you draw the 

function f take a point x2 suppose this is x2 draw a tangent at this point tangent will be nothing 

but  this go on this straight line okay, take another point say x1 here. So what this will be this 

length so from here to here it is x2 from here to here it is x1 so it will nothing but x1 - x2 want it 

okay, so what is the equation of this line. Now at the point x2, fx2 the equation of the line will be 

nothing but y – fx2 is equals to M, M the slope of the line slope is f’ x2 and x – x2 okay. Now we 

want to find out we want to find out this point we want to find out this point so this one will 

nothing but the substitute x as x1 x as x1. 

 

So what we obtain the y will be nothing but fx fx2 + x1 – x2 f’ x2, so this if you are taking as this 

says x1, y so this y is nothing but this expression and you can easily see that this point is nothing 

but x1, fx1 so x1 is fx1 is this height fx1 and this is fy it difference y okay. So fx1 and fx1 is greater 

than equals to y, so fx1 is greater than equals y means this expression gradient of for the first 

years it is derivative this expression means this result. So that means that if you draw a tangent at 

any point on the convex function. 

 



They are tangent always lies below the curve, if you take because this length is always less than 

at this length so that means if you have a convex function and you draw a tangent at any point on 

the convex function they are tangent always lies below the curve okay, so this is geometrical 

interpretation of this inequality. So we can prove some functions to be convex using this 

expression also how so let us see one example. 
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Suppose you have to show that function x
2
 where x belongs to R is a convex function, so we 

have already seen that we can also show we can show this as a convex function simply by 

applying the definition of the convex function but we can also show this to be convex using this 

result using this result. Now let us see what is fx1 – fx2 – x1 – x2
T
 derivative of x2 because it is in 

R okay and we have to show that this quantity is greater than equal to 0 then we can say by the 

serum net function is the convex function. 

 

So what is expression is for this function it is x1
2
 – x2

2 
– x1 – x2 what a derivative of this 

function x2 it is 2 x2, so this is nothing but x1
2
 and this is +x2

2 
 - 2x1 x2 which is nothing but x1 

– x2 whole squares and with the equal to 0 always for all x1 x2, so this implies function is a 

convex function because this inequality must be greater than equal to 0 and that we have shown 



that for this function x
2
 this inequality is greater than equal to 0. Hence we can say there is a 

given function x
2
 is a convex function, so sometimes to prove that a function is a convex 

function we can also use this definition okay so we will see some more popular convex function 

in the next class so thank you. 
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