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So hello friends welcome to the lecture series on nonlinear  programming,  so this  is the last

lecture of the course which deal with search techniques in this lecture we will deal with two

mode  search  technique  that  is  Newton’s  mattered  and  conjugate  direction  mattered  so  what

Newton  mattered  is  and  how  it  is  important  to  solve  non  linear  unconstraint  optimization

problems  and  what  conjugate  direction  mattered  is  just  see.  So  what  is  Newton  mattered

basically suppose you have a unconstrained optimization problem.

(Refer Slide Time: 00:54)

Problem is suppose we have to minimize a function fx where x  ∈ Rn so it is a unconstrained

optimization problem this is this function we have to minimize subject to x  ∈ Rn  where x Rn



okay now in numerical  analysis’s  we have detailed with a technique called Newton raphson

method.

This method is something similar to that method how now suppose you have a differentiable

function f(x) = 0 f is from R → R we have differentiable function f from R →  R such that F(x) =

0, now if you are interested to find out to find the roots of this equation f(x) = 0 so we sometimes

use Newton raphson method what it is it is a recursive scheme bacillary in which starting from a

initial gas say x1 which is given to us or sometimes we assume x1 as initial gas.

We find xk + 1 – xk – f(x)k f’xk where of course f’(xk) should not equal to 0 for all xk you

should so this I am not going to the must detail of this method basically that how this method is

arrived I  am simply illustrating that  this  Newton methods to solve uncontained optimization

problem is comes from Newton Raphson method what Newton Raphson method is  that this

matter is basically suppose we have function f from R →  R okay which such that fx = 0.

And you are interested to find out the roots of this equation to find out root this equation we use

this recursion algorithm x1 initial gas known to you suppose in a similar way suppose you want

to minimize this f okay subject to x ∈Rn now whenever we have to minimized or maximize a

function that means we have to finds out a derivative of the function put it = 0 all those point

where derivative is = 0 that will give the point of maxima or minima.

Basically we are interested to find out those points where derivative is 0 because those are the

stationary points we have the function we will assume we will take maximum or minimum value

okay, so basically to find out to find out the points if this function is differentiable to find out the

point where this attentions it is maxima or minimum where basically interested to solve ∇ of f(x)

= 0 we interested to solve this equation basically we are interested to solve interested to find

those x where ∇ fx = 0 because all those x will greater than f = 0 gives the straight point we are f

will again maxima or minimum okay that may basically we have to solve this equation okay now

this is a gradient know the derivative okay so we will use this recursion f(xk) = 1 = xk – ancient

matrix of f and xk let say inverse and gradient of f at xk so basically it comes from here only

here itself okay basically ensure we solve in this equation.



We are solving this ,equation these are system of equation basically because it is a gradient okay

now how e obtain this result how we obtain this expression let us see, this comes from Taylor

series approximation okay.
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Now to find out the derivation of this expression let us find out let us write the Taylors series

quality approximation of f this f let us try to find out Taylors race by Taylors series the quality of

approximation of this f at xk in the neighborhood of xk now how e can write it, it is fk + x – xkT

gradient  of f(xk) + 1/ 2 x – x(kT) Hessian matrix of f at  xk into x – xk this is  the quality

approximation  of  this  function  about  xk okay now we know that  gradient  of  fx must  be 0,

gradient of fx must be 0 for the stationary points so this implies, this implies basically this is 0.

Because this is a fixed value so > this will be 0 and x into this will be the gradient of f(xk) when

we take gradient both the sides and this will be +x this will be + Hessian matrix of f at xk into x

– xk = 0 so this implies Hessian matrix of f at xk x – xk = - gradient of fxk and this implies x –

xk now we assume the hessian matrix at xk is invertible then only we can take the inverse both

the sides okay, so we are assuming that the inverse of Hessian matrix for each xk exist okay, so

there is negative of Hessian matrix of xk.

Inverse gradient of f(xk) and this implies f = xk – hessian matrix of f at xk inverse gradient of

f(xk) and we write it xk + 1 so in this way we can derive this result so this is basically Newton’s

method to solve unconstraint optimization problems okay, so the limitation of this method is that



this  method will process only when the Hessian matrix at  xk is invertible only then we can

proceed by a Newton’s method but this convergence rate is much faster and it has the descent

property descent property means for each xk the value if f decrease okay so if convergence rate

to 2 and it has the descent property.

(Refer Slide Time: 08:03)

For  solving  quadratic  functions  involving  positive  definite  quadratic  form that  is  a  hessian

matrices possible definite it will take exactly 1/8 ratio to find out the optimal solution that is the

beauty of this matrix that if the if we have a quadratic programming problem suppose were the

hessian matrices  positive definite  then it  will  take only one iteration to find out the optimal

solution okay.

Now suppose we have this problem and we want to solve this problem let us suppose using

Newton matrix so how can we proceed.
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So  problem  is  basically  f  =  x12  –  x1  x2  +  3x22  okay  so  this  is  the  problem  and  initial

approximation which we can take is 1, 2 it is capital x1 which we can take as 1, 2 okay. So using

Newton method first we find ∇f, ∇f will be it is 2x1 – x2 and it is –x2 + 6x1 it is Δf/Δx1, Δf/Δx2

okay and what is hessian matrix of f it is 2,-1,-1, 6 and is it positive definite so when you take it

is 6x2 okay it is x1 sorry when you find ∇f(x), Δf/Δx1 is this thing, Δf/Δx2 is x1 + 6x2 okay

from 6x2 from here, now when you find hessian matrix of f it is 2 it is -1,p-1 and 6 okay, now

this hessian matrix when you compute D1 it is two which is greater than 0 and D2whne you

compute it is 12 – 1 which is 11 and again greater than 0.

So the hessian matrix is positive definite, okay. So hessian matrix positive definite and it is free

from x1 and x2 it is a fixed matrix, so what is what is it inverse is it invertible, yes it is invertible

because is a positive definite matrix and every positive definite matrix is invertible, okay. It is

invertible so what is the inverse of this matrix, inverse will be a 6,2,1,1 and determinant is 11/11.

So this will be the inverse of this matrix.
So we will use this recursion this recursive algorithm to solve this problem okay, take a transpose

of this okay, you need a column vector here so it is okay, so when you x2 it is x1-Hf matrix of f

at x1 it is inverse gradient of f(x1), now it is equals to x1 is the first initial we access 1 and 2-

okay, now inverse of Hf matrix is 1/11 it is 6,1,1,2 and gradient of f(x1) is when you take x1, x1

is 1 and 2 it is 1 and 2 that is 0 when you take 1 and 2 here it is 11, so gradient of f(x1) is 0,11.

And it is 1,2- it is 1/11 when you take this row this column it is 11, this row this column it is 22

and it is nothing but (12)-(12) which is 0,0 so H2 is 0 and 0 now when you compute for x3 here



when you compute for x3 what is gradient of f(x2) when you put 0,0 it is 0,0 and of course when

it is 0,0, 0,0 into this will be 0 so xk+1 will be xk that is x3 will be x2, so that means in the

iteration coincide with the previous iteration that means the optimal solution is 0 and 0.

So x1=0 and x2=0 is the optimal solution okay, so it exactly takes one iteration to solve to this

positive definite quadratic programming problem okay, so in this way applying Newton’s method

we can solve NN constrained optimization problems. Now the next method is conjugate gradient

method, so what this method is let us see, so before setting the method we have some terms let us

define those terms first is conjugate directions.
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So let H be a nxn positive definite matrix okay, the two vectors as shown in s2 belongs to Rn are

said to be conjugate with respect to h, if s1T hs = 0 if this equation hold that is s1T h s2= 0 where h



is a positive definite matrix then the vector s1 s2 are called conjugate vectors respect to the matrix

h or conjugate directions. Now if h = identity matrix then s1s2 are orthogonal vectors we already

know that if it is identity matrix then this is s1
T s2 = 0 that means vectors are orthogonal vectors. 

Now we have a theorem let s1 s2 up to sn be a set of n non 0 conjugate vectors with respect to a

given  positive  definite  matrix  such  okay,  then  the  set  of  vectors  s1 s2 up  to  sn are  linearly

independent. 

(Refer Slide Time: 15:13)

So if we have a set of vectors are s1 s2 up to sn these are set of vectors which are conjugate

vectors with respect to a given positive matrix  such okay. Then we have to show that these

vectors are linearly independent. So how to show take a linear combination of these vectors put it

equal to 0 and if anyhow we prove that all α is a 0 this means vectors are linearly independent

okay, so it implies that all α is are 0 that means vectors are linearly independent. Now suppose

you multiply both side to this equation is given to you and you have to prove that all α is a 0, so

you multiply both sides by suppose s1
T h if you multiply both side by this factor so what we will

obtain?



We obtain this in to α1 s1 + α2 s2 and so on α and sn = 0 this implies since α1 is a scalar so it can be

take an out α1 it s s1
T hs1 α2 is a scalar can be taken out s1

T is s2 and so on αn s1
T hsn, now since s1

s2 up to sn are conjugate vectors are conjugate directions respect to a fix positive definite matrix

H so this means si conjugate h sj = 0 if i0 = 0 okay, this means this is 0 then this is 0 all are the

values are 0 only this value will be non 0 okay.

And since h is the positive definite matrix so s1
T as h1 will be significant 0 so s1 T hs1 will be

significant and 0 okay. so it is non 0 value so this implies α1 = 0, so similarly if you multiply both

sides by s2 T h then it will give α2 = 0 and similarly if you multiply both sides by sk
T h so this will

give this will implied αk = 0 where k may be 1 2 3 up to L so in this way we obtain all α = 0 and

hence we can say that the set s1 s2 up to sn is linearly independent okay.

So hence we have this result, now the next result let f be a cultic function of n variables with

positive definite hessian matrix okay if the successive optimal steps are taken along s1 s2 up to sn

then the point of minimize obtained exactly in n iterations. So this is the theorem I am not going

to in the proof of this theorem okay, suppose f a cultic function of n variables with positive

definite matrix okay.
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Let gradient of f at x1 with the gradient of f at x1 where x1 is an initial approximation then we

have all this expression basically what is the main idea of this conjugate gradient method.

(Refer Slide Time: 19:23)

It’s something like sleeper decent matter but in  sheet of moving along negative or gradient of f

we  move  along  conjugate  directions  now  what  is  there  in  this  matter  let  us  see  the  main

algorithm of this matter basically technical is scheme.
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That is it is  xk+1=xk+αk dk   we are dk is  an direction in which we should proceed so that we will

be having decent property that is the value of f decreases okay αk is an optimal step size that how

much we should move in that direction that is optimal steps of αk and using this we will get next

iteration that is xk+1  okay.

Now initial approximation, initial x is known to you so x2 will be x1+α1 d1 for the finding of the

next iteration x2 now here for the first direction in this method conjugate gradient method in this

method for the first direction we take first direction of negative of gradient of fx1 first direction

we take like this okay.

We move long negative gradient of f at x1 because we know that along this direction the value of

f will decrease okay and to find the optimal step size we substitute this x2 in the function find out

the derivative of f put it equal to 0 that will give the optimal step size α1 using α1 and d1  x1 is

known to us we can find x2 now to find x3 which is x2+α2 d2 to find this d2  instead of moving

long the negative of gradient of f at x2 we move along to find this d2 basically d2 is simply d2

transpose H of f at x1 x2 okay.

And d1=0 basically we find the initial matrix of f, f is a key one function which we have to

optimize  okay  we  find  the  initial  matrix  of  f  at  x2 and  we  find  the  conjugate  direction  d2

respective to d1 in this way we find d2 substitute d2 over here to find out the optimal step size α2

we again substitute x3 in the function put derivative is equal to 0 find optimal step size of α2 and

the process repeats.



That means for the first direction we take negative gradient of fx1 for the second direction we

take a direction conjugate with the direction d1 with respect the initial matrix h so in this way if

you proceed finally obtain the optimal solution with the very faster rate compare to the steeper

method okay.
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So let us try this problem basically using conjugate gradient matter for the illustration so let us

discuss the problem this fx equals to the problem is3x1
2 -4x1x2+2x2

2 then it is +4x1 +6 okay so

this is our main problem basically now suppose we want to find out the optimal solution of this

problem using conjugate gradient method term okay so first we are finding gradient of fx it is

6x1-4x2+4 and it is -4x1+ 4x2 T then what is initial matrix of f is 6 – 4, -4 , 4 and it is definite

because it is 6 > 0 and the determination is 24 – 16 8 which is also > 0 initial matrix is positive

definite okay, let the initial guess as initial approximation as 0, 0 if it is not given to us so we can

take 0, 0 as initial approximation okay, so to find out x2 it is x1 + α1 d1  where d1  is nothing but

negative of gradient of f at x1 which is 4,0 okay and x1 is 0, 0 + α1 times – so it is negative of

this – 4, 0 and this implies it is - 4 α1 and 0. 

So it is x2, now to find α1substitute this f2 in the given function put its derivative = 0 find out the

optimal step size α1, so what is f(x2), you replace x1 by - 4 α1 x2/0 here so it is 3x -4 α12 0, 0 then

4 x 4 α1+x put derivative = 0 this implies 48 x 2 α1 because we are taking derivative also and



-16 = 0, so this implies α1 = 16/2 x 48 that is 1/6 okay, α1 = 1/6, so what will x2 you substitute

α1 here it is – 2/3 and 0. So this would x2 okay.

Now to find x3  it is x2 α2 d2 and to find d2 it is d2
T matrix of f x d1 x 0 that means we are now

finding a direction which is consecutive to d1 with respect to ration matrix h okay, so suppose

this direction is a, b initial matrix is 6-4 and -4, 4 and the d1 direction is -4, 0 = 0 so this implies b

and it is – 24 and it is 16 should be 0 and this implies – 24 a + 16 b should be 0, so you can

choose any ab satisfied in this equation, so if you take a as 2 so be can be taken as 3 , so d2 will

2,3 okay and again to find α2 so what will be x3? Now x3 will be x2 is we have just find -2/3 0 +

α2 + 2 and 3.

So that is – 2/3+ 2α2   and it is 3α2 again we will substitute this x3 in this equation in this function,

what will be fx3, fx3 x –( 2/3+ 2α2) 2  -4 x1 is – 2/3+ 2α2   it is 3α2 + 2x2 it is 3α2 + 4 x1 is – 2/3+

2α2  and + 6. Now put it derivative = α2 and this α2 will give next approximation that is x3 okay.

So in this way we can find out the optimal solution using conjugate gradient method. Now here

this finish the course basically non linear programming, I have tried cover the various topics in

this course thank you very much.  
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