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Hello  friends  welcome  to  today’s  lecture  we  will  continue  our  discussion  over  the

Isoperimetric Problem. So as we have discussed in Isoperimetric Problem we are finding the

extremal of a some functional provided some some conditions on the extremal curve is given

in terms of in other functional.
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So let us come to this so what we have shown here that we want to find out the curve for

which the functional is having an extremum and this extremal curve satisfy the boundary

condition y of a equal to A and y of b equal to capital B and this extremal curve y equal to y

of x keep this another integral as a constant value. So in previous lecture we have seen the

working of this.
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Here to find out the condition on this extremal curve is to show that the extremal will be an

extremal of the another functional that is a to b f plus lambda g dx provided this extremal

curve that is y equal to y of x is not an extremal of the other functional that is I of y. So here

we have seen that if y equal to y x is an extremal curve for J of y and if y equal to y of x is

not an extremal of another functional that is I of y then they exist a constant lambda such that

y equal to y of x is an extremal of the functional a to b f plus lambda g d of x.

So here if I denote this integrand f plus lambda g as another integrand that is capital F here

then you can say that F satisfy the Eulers Equation and in next in previous class we have

proved the theorem using variational derivative and here in this  lecture now let  us try to

generalized the concept which we have discussed in previous lecture.
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So what we try to do here we want to find out say extremal of the functional J of y 1 to y n

which is given as a to b f of x, y 1 to y n y 1 dash to y n dash d of x. Subject to the boundary

condition y i a equal to capital A i, y i b equal to capital B of i, for each i equal to 1 to n. And

the condition given that this a to b g j x, y 1 to y n, y 1 dash to y n dash d of x is equal to L of

j, where j is equal to 1 to k.

So here we want to find out say extremal curves for this functional keeping that these k

integrals are at a constant value that is L j.
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So the proof is not given here in fact to show the extremal here what we try to do here we

consider  another  functional  another  integrand that  is  f  plus summation j  equal to  1 to k,

lambda j g of j and we try to show that this f plus summation j equal to 1 to k lambda j g j

satisfy the Eulers Equation it means that deba by deba y i f plus summation j equal to 1 to k

lambda j g j minus d by dx deba by deba y i dash f plus summation j equal to 1 to k lambda j

g j is equal to 0 for each i equal to 1 to n.
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Let me write the thing here say here we have say a functional which is depending on these

functions y 1 to y n given as a to b and here we have f of x, y 1 to say y n and y 1 dash to say

y n dash d of x and the condition on y i is at y of i a equal to capital A i and y of i b is equal to

capital B i, i is equal to 1 to n here and we not only extremizing this function but it also

satisfy the condition a to b g j x, y 1 to say y n d of x equal to L j for each j equal to 1 to k.

So here  we have  unknowns  are  y 1  to  y n  curves  are  unknown which  extremizing  this

functional provided that these integrals k integrals are also kept as constant value. So for that

as we have done in a previous case we consider a new function capital F as f plus lambda

summation lambda j g of j, j is equal to 1 to k and we try to show we can show in a similar

manner that if y 1 to y n in extremal curves for this functional such that this value is kept at

constant such that this y 1 to y n are not the extremal of this not extremal of these functional

this.



Then this F will satisfy the Eulers Equation in terms of this, so F satisfy the Eulers Equation

for so it means that deba F by deba y i minus d by dx, deba F by deba y i dash is equal to 0

for each i equal to 1 to n.
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So this proof is similar to the previous proof so we are leaving it and we are simply writing

the condition that deba by deba y i f plus summation j equal to 1 to k, lambda j g j minus d by

dx of deba by deba y i dash f plus summation j equal to 1 to k lambda j g j is equal to 0 for

each i equal to 1 to n.

So here if you solve this differential equation then we have 2n arbitrary constant appearing in

the solution and this constant lambda j these parameters lambda j,  lambda 1 to lambda k

sometimes called Lagrange multipliers and these we can obtain these 2n arbitrary constant

and these parameter we can obtain.
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By these boundary condition and the condition which is given here. So 2n arbitrary constant

can be obtained by this and k arbitrary parameters lambda 1 to lambda k can be obtained by

this condition that a to b g j this thing dx equal to lambda j and L j.
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So let us now consider the example based on the theory which we have presented here. So

first example is again a triple example which we have already discussed but just for the sake

of completeness we are discussing it again. So here we have the problem is find the plane

curve of fixed parameter and maximum area so it means that we have a curve call it y and

define say bounded between say point x 1 to x 2 and which has fixed parameter that is L

equal to x 1 to x 2 under root 1 plus y dash square dx, it is a constant value that constant



value we are keeping it as L and the area between the curve and the x axis which is given by

A it is x 1 to x 2 y of dx.

So problem is to find out a curve y for which this functional is kept as constant value and it is

maximizing this functional A. So for this what we try to do here? So we let us take f is equal

to y here and g is this under root 1 plus y dash square. So with the help of theory discussed

earlier let us define capital F which is f plus lambda g, so f is small f is y and small g is under

root 1 plus y dash square. So here capital F is equal to y plus lambda under root 1 plus y dash

square. Now the condition which we have obtained is that this capital F satisfy the Eulers

Equation.
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So if y is an extremal curve then F must satisfy the Eulers Equation which is nothing but deba

F by deba y minus d by dx of deba F by deba y dash is equal to 0.



(Refer Slide Time: 9:44) 

Which is here F is is given already as this so f y is only 1 and f y dash you can find out by

differentiating this.
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So here we have 1 minus d by dx of lambda y dash upon under root 1 plus y dash square is

equal to 0. So here we can solve it by simply differentiating it and converting into second

order differential equation and solving that but here we may solve it in a in an alternative way

that is you just integrate this with respect to x and when you integrate with respect to x you

have 1 is integration of 1 is x minus lambda y dash divided by 1 plus y dash square is equal to

c.



Now this constant c can be obtained by the boundary condition we have. So now when you

simplify when you simplify what you will get let me write it here.
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So here we have seen that since F satisfy the Eulers Equation then we have x minus lambda y

dash divided by under root 1 plus y dash square is equal to c and we can simplify by saying

that x minus c is equal to lambda y dash upon under root 1 plus y dash square we can square

it out and we have x minus c square equal to lambda square y dash square divided by 1 plus y

dash square and you can simplify and you can get y dash square that is lambda square minus

x minus c whole square equal to x minus c whole square.

So we can say that v dash square is equal to x minus c whole square divided by lambda

square minus x minus c whole square. So we can take the square root here and you can say

that y dash is equal to x minus c divided by this is plus minus under root lambda square

minus x minus c whole square and y dash this is y dash not y 1 these are all y dash, so here y

dash square this is y dash, okay so here we have.

So now we have y dash equal to x minus c upon under root lambda square minus x minus c

whole square and this is quite easy to solve in terms of y dash so it is what dy upon d of x is

plus minus x minus c divided by under root lambda square minus x minus c whole square. So

if you assume this denominator term this lambda square minus x minus c whole square as t

square then you can simplify and you can get this as y equal to you simply integrate with

respect to let us say assume that lambda square minus x minus c whole square equal to t



square and you can get minus 2 of x minus c here you can get 2 x minus c d of x equal to 2t

dt so these two will cancel out and you can get and you can integrate, is it okay.
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So here your integration is coming out to be y equal to under root lambda square minus x

minus t whole square plus d. So when you simplify you can square it and you can get x minus

c whole square plus y minus d whole square equal to lambda square. Here the constant c and

d which we can obtain by the boundary condition.
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That y of x 1 is equal to y 1 let us call it y 1 and y of x 2 is suppose another value that is y 2.
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So given the boundary condition you can find out the value of c and d.
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And which says that the extremal  of this  problem which is the the problem that a curve

having fixed parameter which maximize the area is nothing but a circle which is given by this

your c and d can be obtained by the by the boundary condition.
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So now moving on to second example here we want to show that the sphere is the solid figure

of revolution which for a given surface area has maximum value. So it means that we have a

problem where the we need to find out a extremal curve which keep this functional as a

constant value that is the surface area x equal to 0 to between x equal to 0 to x equal to a, 2 pi

y ds as a constant value but maximizing the volume so formed that is V equal to 0 to a pi of y

square d of x.
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Let me do it here, okay. So here what is surface area surface area is your 0 to a 2 pi here you

can find out the surface area by you you just take the surface element here let us say this is a

d of S so it is 2 pi y d of S between this point call it say a to b, so here we have a to b 2 pi y ds



and which we can write it 0 to a 2 pi and y and ds you can write it (under) 1 plus y dash

square d of x.

So here we want to find out a curve y equal to y of x such that this S fixed value that is

capital S and the area then the volume of the say formed by this revolution is is maximum. So

what is that 0 to a here you can find out say volume of that shape as pi of y square and

integrating between a to b, so here you can say that it is a to b pi of y square and d of x here.

So here we want to maximize the volume here keeping the surface area integral as constant.
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So here here your f is pi y square so taking f equal to pi y square and g is equal to 2 pi y

under  root  1  plus  y dash square  we want  to  maximizing  this  V keeping this  integral  as

constant. So for that you define capital F which is given as small f plus lambda g and small f

is defined as pi of y square and small g is given by 2 pi lambda y under root 1 plus y dash

square. Now this capital F satisfy the Eulers Equation if y extremizing the functional be here.
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So now F has to satisfy the Eulers Equation and it is independent of x.
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So since here this integral is independent of x.
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So here we can say that Eulers Equation reduced to this F minus y dash deba F by deba y

dash equal to constant. This is the subcase 5 which we have considered at the end of Eulers

Equation. So F is given as pi y square plus 2 pi lambda y under root 1 plus y dash square.

Now when you calculate y dash deba F by deba y dash you will get this equation and when

you simplify you will get pi of y square plus 2 pi lambda y under root 1 plus y dash square

equal to C.

Now to find out  this  constant  C we have to  look at  the boundary condition,  what  is  the

boundary condition here? The boundary condition is that this curve passes through origin and

and passes through this point a, comma 0.
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So here the condition is given as that y passes through the origin here.
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So if we impose this condition that the curve passing through origin and pass through this

point a, 0 for which we have y equal to 0 for at x equal to 0, y equal to 0, at x equal to a, y

equal to 0. So we can say that that the only value of C which satisfy this condition is that C is

equal to 0 and if we take C equal to 0 then this equation reduce to y plus 2 lambda upon

under root 1 plus y dash square equal to 0, here we simply taken out this pi of y.

So we have y equal to y plus 2 lambda upon under root 1 plus y dash square equal to 0 which

is a simple not simple but it is a differential equation in terms of y dash. So you can find out y

dash by squaring it out and solving for y dash so y dash is coming out to be dy by dx equal to

under root 4 lambda square minus y square divided by y, so this you can solve.
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And you can write integration of dx is equal to integration of y dy under root 4 lambda square

minus y square plus c. When you integrate you can assume 4 lambda square minus y square

as some t square and you can simply solve and in this way you can get x equal to c minus

under root 4 lambda square minus y square. Now we have boundary condition given that

curve passes through origin that is x equal to 0, y equal to 0, we can get our condition c equal

to 2 lambda and hence we can say that our extremal curve will be what x minus 2 lambda

whole square plus y square equal to 2 lambda whole square which is nothing but a circle with

centre  2  lambda  equal  to  0 and radius  is  2  lambda  and hence  the  figure  formed by the

revolution of a given arc is a sphere. So that is what we have given here. So here this is in

general the problem is.
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Now you can say problem is given that at  this point 0, 0 and a, 0 your curve is passing

through so it means that it is something like curve like this and when you revolve you will get

a shape of revolution. And then we are saying that all those curves for which your parameter

is fixed but volume is maximum that is coming out to be a sphere which is obtained by

revolving the circle passing through this point 0, 0 and a, 0, right. So here we have shown that

that  sphere  is  a  solid  figure  of  revolution  which  for  a  given surface  area  has  maximum

volume.

Now let us try to generalize the Isoperimetric Problem where the condition that the constant

is not given in terms of function but it is given in terms of simple condition.
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So here we want to find the functions y i x for which the functional 17 which is functional J

of y, J of y is equal to a to b f of x, y, y dash d of x. This is this has an extremum value and

where the admissible function satisfy the boundary condition y i a equal to capital A of i, y i b

equal to capital B of i, i equal to 1 to n and k finite subsidiary condition is given in terms of y

1 to y n that is g j x, y1 to y n equal to 0 for J equal to 1 to k here.
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So here we are considering the generalize problem. So it means that problem is this not this,

so functional is J of y 1 to say y n is equal to a to b f of x, y 1 to say y n and y 1 dash to y n

dash d of x. So we have seen Isoperimetric Problem generalization of Isoperimetric Problem

where these curves y 1 to y n satisfy the condition that another integral a to b g j x, y 1 to y n

d of x is equal to some L j for J equal to 1 to k.



But when this condition is replaced by finite equation not in terms of integral it means that

now your condition is reduced to this so in place of this now the condition is given as that g

of j your x y 1 to say y n is equal to 0 your j is equal to 1 to k. So these conditions are known

as finite equation so it means your constant is given in terms of finite equation rather than

given in a functional form.

So now we want to find out say extremal  curve which extremizing these functional  here

provided it satisfy the finite subsidiary equation like this. So one such example is to find out

say geodesics on a given surface. So it means that we can say that we have a surface and

there we want to find out say minimum distance between two point. So you can consider that

geodesics as a particular case of the case we which we are considering here.

So now for simplicity we are just taking n equal to 2, so here we are assuming that only y 1

and y 2 are given and k equal to 1 means only 1 subsidiary equation is given here, right.
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So let us consider the theorem. So here we want to extremize the functional J of y of z y

comma z, a to b f of x, comma y, comma z y dash, comma z dash dx and here the admissible

curve lie in this surface h of x, comma y, comma z equal to 0. So here it means we need to

find out say curve y of x and z of x which extremizing this provided this y x and z of x will

lie on this surface here and the boundary conditions are given here that y of a equal to capital

A 1 and y of b is equal to capital of B 1. Similarly z satisfy the same boundary condition we

want to extremizing we want to find out the condition such that y and z extremizing the

function given at (5) 25.
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So here we simply say that let J y have an extremum for the curve y equal to y of x and z

equal to z of x and also we assume that h y and h z do not vanish simultaneously or you can

say simultaneously at any point of the surface 26.
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So here this surface h x, y, z has non zero partial derivative with respect to y and z here.
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Then they exist a function lambda of x such that this curves y equal to y of x and z equal to z

of x is an extremal of the functional a to b f plus lambda x h d of x. So it means that provided

that h has non zero partial  derivative with respect to y and z then your then they exist a

lambda x such that this f plus lambda x h satisfy the Eulers Equation it means that f y plus

lambda h y minus d because y dx f y dash equal to 0 and f z plus lambda h z minus d by dx of

f z dash equal to 0. So here you just look at here we can say that this a to b f plus lambda x h

x dx satisfy the differential equation f y plus lambda h y minus d by dx f y dash equal to 0

and similarly for z f z plus lambda h z minus d by dx f z dash equal to 0.
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So to prove this we will follow the proof given on earlier and let us see how it is, so let J y, z

have an extremum for the curve 29.
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29 is this y equal to y of x and z equal to z of x.
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Subject to the condition 26 that it satisfy the condition.
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And 27, 28 is this boundary condition that is satisfy the boundary condition.
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And let x 1 be an arbitrary point of the interval a to b then we give y of x an increment of

delta y x and similarly z x is given as an increment delta z x, where both delta y x and delta z

x are non-zero only in a neighbourhood of x1 rest it is all 0.

So now using variational derivative we can write down the corresponding increment delta J

as this, so delta J is delta J upon delta y evaluated at x equal to x 1 plus epsilon 1 delta eta 1

plus similarly you can write down for z also plus delta z by delta J by delta z at x equal to x 1



plus epsilon 2 delta eta 2. So here as delta eta 1 and delta eta 2 tending to 0 your epsilon 1

and epsilon 2 is tending to 0.
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Where delta eta 1 is given by the area a to b delta y x dx and delta eta 2 is equal to a to b delta

z x dx and this is what we have done the only thing is now it is given for both y and z so

everything we are doing in a same manner. So similarly we can define your y y star x that is y

of x plus delta y of x similarly z star x is defined as z x plus delta z of x and now here the

only difference is that they are functional has constant value here this function h of x, y star, z

star has same value that is 0. So it means that a to b h of x, y star, z star minus h x, y, z dx will

be equal to 0.

So this we can write it using the Taylors expansion Taylors theorem we can write this as a to

b h y delta y plus h z delta z d of x. So this we can write it  in this  form in terms of a

derivative here that h y evaluated at x equal to x 1 plus epsilon 1 dash delta eta 1 plus h z

evaluated at x equal to x 1 plus epsilon 2 eta dash delta eta 2. So this is also similar to your

previous theorem so here we try since this quantity is equal to 0, so you can calculate delta

eta 2 in terms of delta eta 1 that you can do by assuming that h z is non-zero since this is

already known because we already know that a partial derivative of h and h with respect to y

and z are non-zeros, so this is non-zero so you can write it delta eta 2.
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In terms of delta eta 1 that is this. So using the value of delta eta 2 you write down this

expression for delta J which is given as delta J is equal to delta J by delta y evaluated at x

equal to x 1 minus h y upon h z delta J by delta z at evaluated at x equal to x 1 into delta eta 1

plus epsilon delta eta 1. So here epsilon is tending to 0 as delta eta 1 is tending to 0. So it is

also in a similar manner.
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So we can say that here a necessary condition for an extremum is that delta J is tending to 0.

Now since delta eta 1 is non-zero while x 1 is arbitrary we can say that this quantity is going

to be 0. So this quantity is going to be 0 means your delta J by delta y minus h y upon h z

delta J by delta z equal to this quantity is what delta J by delta y? This is f y minus the by dx



of f y dash minus h y upon h z this is delta J by delta z is given by f z minus d by dx of h z

dash.

When you simplify this you can write it in this form that ratio of f y minus d by dx of f y dash

divided by h y and f z minus d by dx of f z dash by h of z has to be equal. Now you can say

that this is a function of x, this is also a function of x. So you can say that this is equal to

some function which is we are denoting here as minus of lambda x and if we assume this as

minus of lambda x then our theorem statement.
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That is this that f of y plus lambda h y minus d by dx of f y dash is equal to 0 and f z plus

lambda h z minus d by dx of f z dash is equal to 0 is true. So now let us take a particular

example based on this then we can understand the only thing is we have to understand here

that delta J by delta y minus h y upon h z delta J by delta z is equal to 0 we remember this

thing.
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So let us take an example, here example is that the distance between two given points in

space measured along the smooth arc x equal to x t, y equal to y t, z equal to z t is given by

this integral, right this is the distance between two points evaluated at t equal to t 1 and t

equal to t 2 so that represent the distance between these two points. And arc is lying on the

surface h of x, y, z equal to 0.

So here we want to consider we want to minimize this functional here. Now this is the same

problem which  we can  consider  as  geodesics  problem.  So determine  the  function  which

extremizing the integral 36 with respect to continuously differentiable function x, y, z which

satisfy  the  condition  37  means  we  have  to  find  out  the  curve  on  this  surface  having  a

minimum distance between the point t 1 and t 2.
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So so here your capital F is given as under root x dash square plus y dash square plus z dash

square  plus  lambda  t  h  of  x,  comma  y, comma  z.  So  by  previous  theorem your  Eulers

Equation which is also known as Euler-Lagrange equations are given by this. So simply you

find  out  deba f  by deba  y minus d by dx of  deba  f  by deba y dash.  So we are simply

generalizing  this  concept.  So  lambda  deba  h  by  deba  x  minus  d  by  dt  here  because

independent variable is t so minus d by dt x dash by f. Now what is x dash here? So you find

out say since this this is not involving any derivative here derivatives are only here.

So here we simply say lambda deba h by deba x minus d by dt of now when you differentiate

this with respect to x dash what you will get 1 upon 2 under root x dash square plus y dash

square plus z dash square and then in numerator you will have two x dash so you can write it

this is nothing but x dash by f equal to 0 and since it is symmetric with respect to x, y and z

so you can have 39, 40 and 41 as a relation. Now when you simplify this you can find out say

value of lambda in each equation 39, 40, 41.
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And you can write it d by dt of x dash by f equal to divided by deba h by deba x equal to this.
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So all these are equal which is nothing but the value of lambda which you have evaluated

from these three equation.
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So here small f is given by under root x dash square plus y dash square plus z dash square

which is commonly known as ds by dt, right.
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So here we take a particular example let us take the example that the surface is given by

sphere of radius a whose centre is given at origin. So here if we take h x, y, z as this sphere x

square plus y square plus z square equal to a square. Then you can find out h x, h y, h z.
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And if you keep the value of h x, h y, h z in this equation number 43 here so by putting this

value you will have I am solving this d by dt of of x dash upon f.
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You will see that it will be reduced to this equation equation number 45. So here we have f of

x double dash minus x dash f dash divided by 2xf square equal to fy double dash minus y

dash f dash divided by 2yf square in fact it is symmetric with respect to x, y, z. So once we

have for x dash you can similarly evaluate for y dash y and z component. So from here this is

you can simplify further simplify and you can write down this.
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In terms of this, so what you try to do take these two equation find out the ratio of f dash

upon f. Similarly take these two find out the ratio of f dash upon f. Similarly the first and

third you will get value of f dash upon f.
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So here we have this y of yx double dash minus xy double dash divided by yx dash minus xy

dash equal to f dash upon f. So this you can get so here you forget this f dash upon f and then

we have this these two equation yx double dash minus xy double dash divided by yx dash

minus xy dash is equal to zy double dash minus yz double dash divided by zy dash minus yz

dash, if you look at the numerator is nothing but derivative of the denominator.

So taking these thing in mind we can write this as d by dt of derivative of the denominator

here. So if you do it then we can integrate and we can get this log of y of x dash minus x of y

dash equal to log of zy dash minus yz dash plus some integration constant that is log of C 1.

So we will get this condition yx dash minus xy dash equal to C 1 zy dash minus yz dash.
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Now this again we can simplify and we can write it x dash plus C 1 z dash upon x plus C 1 z

equal  to  y  dash  upon y. Now again  we can  get  that  this  numerator  is  derivative  of  the

denominator. So you can further integrate both the side and you can get log of x plus C 1 z

equal to log of y plus another integration constant that is log of C 2 here. When you simplify

this you will get that x minus C 2 y plus C 1 z is equal to 0.

So this is the equation of the curve which gives you say which which extremizing the given

functional and which represent the equation of a plane through the centre of the sphere whose

intersection with the sphere is the great circle. So this we have already shown that geodesics

on a sphere is coming out to be a great circle. So this we have already proved but we are

proving it showing it again with the help of theory which we have developed in this lecture.

So here we end our discussion and in next class we will discuss some more problem based on

calculus of variation. So thank you for listening us thank you.


