
Mathematical methods and its applications 

Dr. P. N. Agrawal 

Department of Mathematics 

Indian Institute of Technology, Roorkee 

 

Lecture – 14 

Solution of higher-order homogenous 

linear differential equation with constant coefficients 

 

Hello friends. Welcome to my lecture on Solution of Higher-order Homogenous Linear 

Differential Equations with Constant Coefficients. So far we considered second order 

homogenous linear differential equation with constant coefficients. Now we shall 

generalize the idea to higher-order homogenous linear differential equation with constant 

coefficients. 
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So, let us consider the nth order homogenous linear differential equation with constant 

coefficients a naught y n, y n is nth derivative of y with respect to x, plus a 1 y n minus 1 

a to y n minus 2 and so on a n minus 1 y 1 plus a n y equal to 0. Where a naught a 1 a 2 a 

n minus 1 a n are constant coefficients and y r denotes the rth derivative of y with respect 

to x. 
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So, one less than or equal to r less than or equal to n, this denotation for the derivatives 

of y with respect to x; now, let us put y equal to e to the power m x. We have seen in the 

case of the second order linear differential equation with constant coefficients that in the 

case of first order linear differential equation it turned out that exponential solution is a 

solution of that homogenous linear differential equation of first order. So, we tried why 

not let us see for exponential solutions of second order. And it indeed turned out that the 

second order linear differential equation have exponential functions as solutions. 

So, let us put y equal to e to the power m x in equation 1. So, then what do we have if 

you y equal to e to the power m x then y dash is m times e to the power m x, y double 

dash is m square times e to the power m x and so on nth derivative of y gives you m to 

the power n e to the power m x. So, when you put y equal to e to the power m x in 

equation 1, but you get is a naught m to the power n plus a 1 y m to the power n minus 1 

and so on, n minus 1 m plus a n times e to the power m x is equal to 0. 

Now, it is very well known that e to the power m x is never 0 for l e x belonging to r. So, 

we will get a naught m to the power n plus a 1 m to the power n minus 1 and so on n 

minus 1 m plus n equal to 0 which is known as the auxiliary equation or the 

characteristic equation. So, this equation will have n roots counting the multiplicity. So, 

those n roots if those n roots are all real and distinct. So, there are 3 possibilities, the n 

roots of the equation auxiliary equations are all real and distinct. Then there is the second 



case where the some of the roots may be equal and then the third possibility where some 

of the roots may be complex. So, let us discuss each case one by one. 
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So, suppose the n roots of the auxiliary equation are m 1 m 2 m n and they are all 

distinct. Then the corresponding solutions of the equation 1 will be e to the power m 1 x 

e to the power m 2 x and so on, e to the power m 1 x and they are all linearly 

independent because if you take to prove that these n solutions e to the power m 1 x e to 

the power m 2 x and so on e to the m 1 x, they are linearly independent l I. 

Let us consider c 1 e to the power m 1 x plus c 2 e to the m 2 x and so on, c n e to the 

power m 1 x equal to 0. Then we have to prove that c 1 c 2 c n are equal to 0. We can 

prove this by mathematical induction. Suppose if we can prove this by mathematical 

induction. So, the result clearly holds for n equal to 1, result holds for n equal to 1, 

because when n is equal to 1 e to the power m 1 x is never 0. So, the result holds for n 

equal to 1. So, this implies that e to the power m 1 x is linearly independent.  
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So, suppose the result holds for k functions that are then we have to show that the result 

holds for k plus 1 function. So, c 1 e to the power m 1 x plus c 2 e to the power m 2 x 

and so on c k plus 1 e to the power c 1 e to the power m 1 x plus c 2 e to the power m 2 x 

and so on c k plus 1 e to the power m k plus 1 x equal to 0, we have to prove that c 1 c 2 

c k plus 1 equal to 0. 

Now, since e to the power m 1 x is never 0, we can divide this equation by e to the m 1 x. 

So, dividing we have c 1 e to the plus c 2 e to the power m 2 m 1 into x, plus c 3 e to the 

power m 3 minus m 1 into x n; so on c k plus 1 e to the power m k plus 1 minus m 1 into 

x equal to 0. Now the result holds for c 1 c 2 c k plus 1. So, whenever and the k functions 

is equal to 0. Now we can differentiate this with respect to x, let us differentiate this with 

respect to x, then we will get c 2 e to the power m 2 minus m 1 x, into m 2 minus m 1 

plus c 3 e to the power m 3 minus m 1, into x into m 3 minus m 1 and so on c k plus 1 e 

to the power m k plus 1 minus m 1 into x into m k plus 1 minus m 1 equal to 0. 

So, e to the power m 2 minus m 1 x e to the power m 3 minus m 1 x e to the power m k 

plus 1 minus m 1 x are functions, where these m 2 minus m 1 m 3 minus m 1 m k plus 1 

minus m 1 they are all distinct, and we have assumed the result for k functions. So, these 

are k functions. So, they are linearly independent. So, their coefficients must be 0. So, c 

2 times m 2 minus m 1 equal to 0, c 3 times m 3 minus m 1 equal to 0, and so on. C k 

plus 1 m k plus 1 minus m 1 equal to 0. Since m 2 is m 1 m 2 m 3 and so on m k plus 1 



are all distinct, this implies that c 2 c 3 and so on c k plus 1 are all 0s, and from this 

equation when you put c 2 c 3 c k plus 1 equal to 0, we get So, this equation let us call it 

as 1. So, from one we get c 1 equal to 0. 

So, c 1 c 2 c 3 and so on c k plus 1 equal to 0. So, the result holds for k by mathematical 

induction it holds for all k. 
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Here the n functions e to the power m 1 x e to the power m 2 x and for e to the power m 

1 x are linearly independent. And therefore, the general solution we can write as, So, 

general solution can be written as y equal to c 1 e to the power m 1 x plus c 2 e to the m 

2 x and so on, c n e to the power m 1 x when the roots of the auxiliary equation are all 

real and distinct. So, let us say for example, D cube minus 2 D square minus D plus 2 y 

equal to 0 D cube minus 2 D square minus D plus 2 y equal to 0, D here represents D 

over D x. So, it is a third order linear differential equation with constant coefficients. So, 

let us assume y equal to e to the power m x, then we get m cube minus 2 m square minus 

m plus 2 e to the power m x equal to 0. 

Since e to the power m x is not 0, for any x, we have the auxiliary equation m cube 

minus 2 m square minus m plus 2 equal to 0. Now we can easily factorize this equation. 

So, m is square times m minus 2 minus 1 times n minus 2. So, the factors are m minus 2 

and m square minus 1.  
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So, we can write m minus 1 into m plus 1 equal to 0. The 3 roots of the auxiliary 

equation are 1 minus 1, 1 minus and 2. So, these are the auxiliary equation as real and 

distinct roots. So, with general solution will be y equal to c 1 e to the power x c 2 e to the 

power minus x plus c 3 e to the power 2 x in this case. Now let us move to second 

possibility in the second case, we have real multiple roots, when certain root occurs more 

than one. 
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So, let us let r be the multiplicity of a root say m equal to m 1 and let us assume that the 

remaining n minus r roots be real and distinct. 

So, corresponding to the distinct roots n minus r, n minus r roots the corresponding n 

minus r real and distinct roots we can write the corresponding part of the complementary 

function like we wrote in the case of case 1. So, when we have r roots which are equal 

how we will find the corresponding part of the complementary function let us see that 

here. So, assume that m equal to m 1 occurs r times m equal to m 1 occurs r times. So, 

one solution of the auxiliary equation is one solution of the equation 1 will be y 1 x equal 

to e to the m 1 x let us try to find the other r minus 1 linearly independent solutions of the 

equation 1. 

So, we shall now show that the remaining r minus 1 linearly independent solutions 

corresponding to the multiple root m equal to m 1 are given by x into y 1, that is x into e 

to the power m 1 x x square into y 1 that is x square into e to the power m 1 x and so on, 

x to the power r minus 1 e to the power m 1 x. 
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Now, let us note that the Wronskian of these solutions letter W, W is the Wronskian of 

W is the Wronskian of e to the m 1 x x e to the power m 1 x x square e to the power m 1 

x and so on x to the power r minus 1 e to the power m 1 x. So, let us first note that the 

Wronskian of these r functions is not equal to 0. So, they are linearly independent. Let us 

see how we will prove this; we have to show that these n r functions are linearly 



independent. So, let us consider their combination c 1 e to the power m 1 x c 2 x e to the 

power m 1 x, and so on c r x to the power r minus 1 e to the power m 1 x equal to 0. We 

have to prove that c 1 c 2 c r are all 0s. Since e to the power m 1 x is never 0, let us 

divide this equation by e power m 1 x. So, we get then c 1 plus c 2 x plus c 3 x square 

and so on c r x to the power r minus 1 equal to 0. So, we get this equation. 

Now, we have to prove that this equation gives us c 1 c 2 c 3 and so on c r equal to 0. 

Now, in other words we have to show that the functions 1 x x square x to the power r 

minus 1 are linearly independent. We have to show that 1 x x square x to the power r 

minus 1 are linearly independent. So, this is a polynomial in x of degree r minus 1. So, 

and we need to find these r coefficients. So, let us take n points r points x 1 x 2 x r r 

points x 1 x 2 x r which satisfy this equation. So, then we shall have let us say let c 1 plus 

c 2 x 1 c 3 x 1 square and so on c r x 1 r minus 1 equal to 0. We have r distinct point let 

us take r distinct points x 1, x 2, x r, these satisfy this equation. So, then c 1 c 2 x 1 c 3 x 

1 square c r x 1 r minus 1 c 1 plus c 2 x 2 c 3 x 3 square 2 square and so on, c r x 2 r 

minus 1 equal to 0, and so on c 1 plus c 2 x r plus c 3 x r square and so on c r x r r minus 

1 equal to 0. 

So this can this is a homogenous system of linear equations, we can write it as 1 x, 1 x 1 

x square x 1 to the power r minus 1 1 x 2 x 2 square x 2 to the power r minus 1 and so 

on, 1 x r x r square x r to the power r minus 1 c 1 c 2 and so on c r equal to 0. Now these 

homogenous system linear differential equations, so this will have trivial solution 

provided the determinant of this matrix is nonzero, and the determinant of this matrix is 

actually nonzero, because it is Vandermonde determinant whose value is equal to 

determinant of this matrix 1 x, 1 x 1 square x 1 to power r minus 1. 
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This is equal to product of 1 less than or equal to I less than j less than or equal to r x I 

minus x j. So, since x i’s are all distinct; since x i’s are all distinct the value of it is value 

is nonzero. 

Since x is are distinct. So, this determinant of this nonzero and therefore, c 1 c 2 c n are 

equal to 0, hence these n functions 1 x x square x to the power r minus 1 are linearly 

independent. And So, the n functions here they are linearly independent, y 1 x y 1 x 

square y 1 x to the power r minus 1 y 1. So, the proof of W not equal to 0 is rather 

difficult. So, we have proved it by the other method. 
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Now, let us see if we let us substitute by if you if you define this as l y. If you define the 

left hand side of equation 1 by l y, then what we will have if you put y equal to e m x in 

this then l e m x will be equal to a naught m to the power n a 1 m to the power n minus 1 

and so on, a n into e to the power m x. And since m 1 occurs r times as a root of this 

characteristic equation we have m this can be written as m minus m 1 to the power r into 

g m, into e to the power m x where g m is not gm 1 is not equal to 0 e to the power m x is 

never 0. So, m 1 occurs r times means the remaining expression g m into e to the power 

m x must not be 0. So, g m 1 is not equal to 0. 
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Now, let us consider m as a parameter. So, then D over D m l e m x let us differentiate 

this equation with respect to m. When we differentiate this equation with respect to m 

what we get is D over D m l e m x equal to r times m minus m 1 to the power r minus 1 g 

m e to the power m x m minus m 1 to the power r D over D m of g m e to the power m x. 

Now since l is a linear differentiable operator, we have taken l s this l s this. So, it is a 

linear differentiable operator. So, with respect to the independent variable x and m and x 

are independent to each other.  

Therefore, D over D m of l e to the power m x can also be written as l D over D m of e m 

x. And when we differentiate e m x with respect to m we get x e to the power m x. So, l x 

e to the power m x is equal to this. And this when it says at x m equal to m 1 this when it 

says that m equal to m 1. So, x e to the power m 1 x is also a solution of the equation 1. 

So, since the right hand side vanishes at m equal to m 1 x e to the power m 1 x is also 

solution of the differential equation 1. 

Again differentiating question 4 with respect to m this equation you again differentiate 

with respect to m then we will have r into r minus 1 m minus m 1 to the power r minus 2 

g m e to the power m x and the other terms will be these ones, 2 r m minus m 1 to the 

power r minus 1 D over D m of g m e to the power m x and then m minus m 1 to the 

power r D square over D m square g m e to the power m 1 x again we put r m equal to m 

1. So, this vanishes because r is greater than 2. So, this vanishes, and this also vanishes 

and this also vanishes. So, x square e to the power m x is also a solution of equation 1. 

So, in this manner we continue and when we differentiate r minus 1 times after r minus 1 

times we differentiate. 
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The first term on the right hand side is obtained as first term here. If you differentiate it, 

if you differentiate this here we have differentiated, when we see here if you differentiate 

r minus 1 times m minus m 1 to the power are this expression m minus r minus 1 times. 

Then the first term on the right side will be obtained as r factorial m minus m 1 D g m 

into e to the power m x, which vanishes at m equal to m 1 the other terms will also 

vanish because their powers of m minus m 1 will be more than or 1, and here. So, x to 

the power r minus 1 e to the power m 1 x will also be solution. 

Now, if we differentiate one more time with respect to m, that is r times the first term on 

the right hand side will be now, r factorial g m e to the power m x which does not vanish 

at m equal to m 1. Since g m 1 is nonzero. So, it shows that x to the power r e to the 

power m 1 x is not a solution. And thus we find that e to the power m 1 x, x e to the 

power m 1 x and so on, x to the power r minus 1 e to the power m 1, x are linearly 

independent solutions corresponding to the multiple root m equal to m 1,  
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Let us show in the case of r multiple roots, r roots of the equal, we this is how we will 

find the independent solutions. 
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So, let us consider the equation at 8 D cube, 8 D cube minus 1 2 D square, and then we 

have 6 D minus 1, y equal to 0. So, the auxiliary equation will be 8 m cube minus 1 2 m 

square plus 6 m minus 1 equal to 0. 8 m cube minus 1 2 m square plus 6 m minus 1 equal 

to 0. 



Let us find; solve this cubic equation. So, here we notice that if we take m equal to half, 

then we get 8 into 1 by 8 minus 1 2 into 1 by 4 plus 6 into 1 by 2 minus 1 equal to 1 

minus 3 plus to plus 3 minus 1 equal to 0. So, m equal to half is a root of this equation. 

So, we can put m let us put 2 m minus 1 2 m minus 1 is a factor of this equation, 2 m 

minus 1. So, we can write 4 m square 4 m square means 8 m 8 m cube minus 4 m square. 

And then we will take 4 m square 8 m not 8 m 4 m into 2 m minus 1. So, we get minus 8 

m square m 4 m square minus 1 2 m square minus plus 4 m. So, we get how much we 

require 8 m cube minus 4 m square minus 8 m square minus 1 2 m square plus 4 m plus 

4 m is minus 4 m; so 2 m minus 1. 

So, this is equal to this, how we have factorized this. So, this is 2 m minus 1 into 4 m 

square minus 4 m plus 1. These are the 2 factors and this can be this is square of 2 m 

minus 1. So, this is 2 m minus 1 whole cube. So, here m equal to half is a root of 

multiplicity 3. And, general solution is y equal to c 1 plus c 2 x plus c 3 x square e to the 

power half x in this case. 

(Refer Slide Time: 28:04) 

 

Let us now consider the third case multiple complex roots. This case is a combination of 

the 2 earlier cases. Suppose the p plus i q is a multiple root of order m then since the 

coefficients of the given differential equation in 1 are real the p minus /i q will also be a 

multiple root of order m. So, for example, if p 1 i q 1 is a double root then p 1 minus i q 1 

is also a double root. 



Now, we have earlier seen that if p 1 plus i q 1 and p 1 minus i q 1 are roots of the 

auxiliary equation, then the corresponding independent solutions are e to the power p 1 

cos q 1 x and e to the power p 1 sin q 1 x. Now p 1 plus i q 1 is a double root, and p 1 

minus i q 1 is a double root. So therefore, if y 1 is p 1 plus i q 1 and y 2 is p 2 minus p 2 

minus i q 2 y y 1 is p 1 plus i q 1 and y 2 is, sorry if y 1 is e to the power p 1 plus i q 1 

into x and y 2 is p 1 minus i q 1 into x. Then the then y 1 plus y 2 y 2 is also a solution 

and y 1 minus y 2 y 2 i is also solution. So, if p 1 plus i q is a double root and p 1 minus i 

q 1 is double root then e to the power p 1 q as e to the power then y 1 plus y 2 y 2 and y 1 

minus y 2 y 2 y which are e to the power p 1 cos q 1 x and e to the power p 1 x sin q 1 x. 
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They will also be double roots, and therefore, the corresponding independent solutions 

will be e to the power p 1 x cos q 1 x x e to the power p 1 x cos q 1 x e to the power p 1 x 

sin q 1 x, x e to the power p 1 x sin q 1 x. 
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So, we will write the general solution in this case as follows. So, D 4 plus thirty D square 

256 suppose this is equal to 0 D 4 plus 32 D square plus 256 y equal to 0. So, the 

auxiliary equation will be m 4 plus 32 m square plus 256 equal to 0 let us this is equal to 

m 4 plus 6 m square plus 1 6 whole square equal to 0. If you square this, we get m 4 plus 

32 m square plus 256 equal to 0. 

So, we have here m square now, m square plus 16 is equal to gives you equal to 0 gives 

you m equal to plus minus 4 i. So, plus minus 4 i occur twice, because here we have m 

square plus 1 6 square. So, this gives you m equal to plus minus 4 i and plus minus 4 i. 

So, 4 occur twice and minus 4 i also occur twice. So, here we will have the independent 

solutions will be e to the power if p 1 plus i q 1 is a root and p 1 minus i q 1 is a root. 

Then we have e to the power p 1 x cos q 1 x. So, we have here p 1 is 0. So, cos q 1 x 

means cos 4 x is a root sin 4 x is a root sin cos 4 x is a solution sin 4 x is a solution. And 

the other linearly independent solutions are x cos 4 x and x sin 4 x. 

So, we will write the general solution as y equal to c 1 cos c 1 plus c 2 x cos 4 x and c 3 

plus c 4 x, sin 4 x in this case, where c 1 c 2 c 3 c 4 are arbitrary constants. So, with that 

we conclude this lecture on solution of homogenous linear differential equations of 

higher-order.  

I thank you for your attention. 


