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In today’s lecture we will study some applications of the principle of inclusion and exclusion.
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Now first let us look at this example which is based on the sieve of Erastothenes. Now the Greek

mathematician Erastothenes developed a technique of listing all the prime numbers between 1

and any positive integer n. So our goal is to list all the prime numbers between the number 1 and

a positive integer n. The procedure is as follows, one remove all the multiples of two other than

two.



Keeps the first remaining integer exceeding two which is the prime number three? Third step
remove all the multiples of three except three itself four keep the first the remaining integer
exceeding three which will be the prime number. Then remove all the multiples of five except
five we have to continue in this way. What happens is that if we take a positive integer n let us

say n = 1000.

So we are looking at positive integers from 1 to 1000, and if we keep on repeating this process,
then ultimately we will we will be left with the prime numbers between 1 to 1000. Now our

problem is derived from this method which is called the sieve of Erastothenes, so let us look at

the problem.
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Count the number of integers between 1 and 1000 which are not divisible by 2, 3, 5, and 7. In
order to solve this problem we consider certain sets, first let U be the set of integers X such that 1
less than or equal to X less than or equal to 1000. Now we define some subsets of U Al equal to
the set of elements of U divisible by 2, A2 the set of elements of U divisible by 3, A3 the set of
elements of U divisible by 5, A4 the set of elements of U divisible by 7.

Now we are looking at the set of integers between 1 and 1000 which are not divisible by 2, 3, 5,
and 7. We have in the beginning constructed four sets which are in fact subsets of U, the integers

between 1 and 1000 namely Al, A2, A3, A4, where Al consists of all the elements which are



divisible by 2, A2 the set of elements divisible by 3, A3 elements divisible by 5, and A4 elements
divisible by 7.

Now if we consider the set A1 complement this is the set of all the elements in U which are not
divisible by 2. A2 complement is a set of all elements of U not divisible by 3. A3 complement is
a set of all elements of U not divisible by 5 and A4 complement set of all elements of U not
divisible by 7. Now that means that our set under consideration is intersection of all these

compliments and this gives me the set of all elements in U which are not divisible by 2, 3, 5, 7.

Now we can process this a little further by considering this is in fact AITUA2UA3UA4 and the
complement this is by using Demorgan’s law. So the cardinality of Al compliment NA2
compliment NA3 compliment MNA4 compliment is the cardinality of the compliment of
ATUA2UA3UA4 which in turn is equal to the cardinality of U which is the universal set minus
the cardinality of ATUA2A3A4.

Now we will quickly calculate the cardinalities of Al, A2, A3, A4 and the cardinalities of Al’s,
intersections of Al’s taken 2 at a time 3 at a time and all at a time, and then use principle of
inclusion and exclusion to get the cardinality of the union of Al, A2, A3, A4. So we start our
process by checking the cardinality of Al which is 1,000/2 500, A2 which is floor of
1000/3=333, by the way floor of a real number is the largest integer less than that real number.

Then A3 1000/5 which is 200, and A4 which is the floor of 1000/7 which gives us 142. Then we

take intersections of AI’s for distinct I’s they can two at a time.
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So we get AINA2 is equal to floor of 1000/6 because if a positive integer is divisible by both 2
and 3, then of course it is divisible by 6 and the converse. Therefore we will have 166 A1MNA3
this gives me 1000/10 which is 100 and A1MNA4 for which is floor of 1000/14 = 71, then A2NA3,
A2NA4 and lastly A3NA4 which is floor of 1000/35 = 28.

Then we have to take the intersections taking three at a time so I will have A1NA2MNA3, so these
are precisely the elements which are divisible by 2, 3, and 5. Therefore, divisible by 30 so
therefore it will be 1000/30 floor of that which is 33, then I have got Al, A3, A4 which is
1000/70=14 and we have Al, A2, A4 which is 1000/42=23, and finally Al this will be A2, A3
and A4 which is floor of 1000/105, so it is 9.

And the last one taking 4 at a time is and we can check that this is just the number 4. Now if we
remember all these things then we can see that the cardinality of Al complement NA2
complement NA3 complement NA4 complement is cardinality of U this one which is of course
1000 minus cardinality of Al 500 plus cardinality of A2 333 + 200 + 142 these are the
cardinalities of Al, A2, A3, A4.

Then subtract from this one the cardinality of A1NA2 which is 166, - 100, - 71, - 66, - 47, - 28,
and then we start adding we add 33 + 14 + 9 so and + 23. And then again subtract the last
expression that is 4, if I do this then the number that I get is 222. And this is the number of

integers between 1 and 1000 which are not divisible by 2, 3, 5, and 7. Thus in this example we



see how we are using the principle of inclusion and exclusion to count some number of some

things. We move on to more serious examples, and this example involves Euler's ¢ function.
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Now the first question is what is Euler's ¢ function for that, first of all we have to know what do
we mean when we say that two positive integers are relatively prime to one another. Let me write
the definition first two positive integers are said to be relatively prime if the number one is the
only common divisor that they have. Now suppose n is a positive integer ¢n is defined as the
number of positive integers greater than or equal to 1 and less than or equal to n which hard

relatively prime to n.

So in simple words we take a positive integer N and we count the number of positive integers
between 1 and n which are relatively prime to n and this number is called the ¢n. Now what we
are interested here is to get a get an expression of ¢n which does not seem to be very easy. If we
start checking some small examples and we see that ¢1 is of course 1, $2 is also 1, ¢3 is 2, ¢4 is
also 2, because the positive integers less than 4 is 1, 2, 3, and 4 here one is of course relatively
prime to 4, 2 is not relatively prime to 4, and 3 is relatively prime to 4 and of course 4 is not

relatively prime to 4 so we have got we say ¢4 is 2, then 5 is 4 and so o.

So as such there is no direct pattern that that is obvious. So we have to find out an expression of
¢ if at all it exists incidentally this function is called the Euler’s ¢ function. Now suppose P1, P2

up to Pk are the distinct prime divisors of M. We consider the universal set 1, 2, up to n and



denoted by U. We also consider a set like this A; which is the subset of U consisting of those

integers divisible by Pi.

So we are looking for integers which are in U and not divisible by any of the Pi therefore ¢n is
equal to cardinality of A1 complement NA2 complement N and continued in this way up to Ak
complement. We can manipulate and get this equal to U minus cardinality of U-A1UA2U and so
on up to Ak. Now again we see that the expression that we are getting is almost similar to the
expression that we got in the last example. Only thing is that we have to know how to count the

cardinalities of AIl’s and intersections of different Al’s.
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We base this on an observation if D divides n, then there are n/d multiples of D in U. This can be
verified and I leave it as an exercise, but if we take it to be true which of course we can verify
then we will get Al = n/Pi AiNAj where I is not equal to J, equal to n/Pi Pj and proceeding in this
way finally we will get A1N and so on up to NAk =n/P1...Pk.
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And therefore, considering all this we will get ¢n equal to n which is the cardinality of U and
then -)i=1 to k n/Pi this is essentially ) i=1 to k cardinality of Ai and I put a minus over here to
obtain i=1 to k n, I have to put i=1 to k and j=I to k with a condition that I is always less than j.
So this is Pi Pj and we will proceed in this way to ultimately the last expression, this is the

cardinality of A1, I am sorry A1N and up to a k.

And this intermediate second entry is essentially high less than J NAiNA] cardinality. Thus we
have basically used the Pj, I am sorry, we have basically used the principle of inclusion exclusion
in the last part of the right hand side to plot an expression. Now we can process this further and
write n -Yi=1 to k nPi + less than j nPixPj — and so on, at the end it is —1* n P1 up to Pk. And the
careful analysis shows that this is equal to n (1-1/P1)(1-1/P2) and so on up to n(1-1/Pk).

And thus finally we have got an expression for ¢n which is ¢pn = n(1-1/P1)(1-1/P2) and so on up
to 1-1/Pk, where n=P1%', P2*® and Pk®™ where ai’s are greater than or equal to 1, and PI’s are
distinct prime numbers. Euler’s ¢ function plays an important role in number theory and many
other applications of number theory. This example gives us an instance where the principle of
inclusion exclusion gets used in finding out a very fundamental function of number theory which
is the Euler’s ¢ function. Next we will talk about counting certain kind of permutations by using

the principle of inclusion and exclusion.
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Now these permutations that we are going to study are called derangements. Let me start by
defining derangements among the permutations of the numbers from 1 to n, there are some
permutations in which none of the n integers appears in its natural place. Now these permutations
are called derangements. Now what we would like to do is to count the number of derangement
of n numbers from 1 to n suppose dn is equal to the total number of derangement on the set 1, 2,

up to n.

Now just like the previous examples we are going to define some sets. So in general we define
Al equal to the set of all the permutations on 1, 2, up to n which keeps the i" element namely I in
its natural place. And of course I will move i from 1, 2, up to n. Let you denote the set of all
permutations on 1, 2, up to n just to recall that this means that U is the set of all 1 to 1 on 2

functions from 1, 2, uptonto 1, 2, up to n.

Now from the discussions that we have done before it is now clear that dn is equal to evil
complement NA2 complement N and so on up to n complement, and which again in exactly
similar way as before can be written as cardinality of U minus cardinality of AITUA2U and so on
up to AN. We know that the cardinality of U is factorial n, and therefore we have to just find the
cardinality of A1U and so on up to cardinality of AN.

For that we will start checking the cardinality of A1 which is factorial n - 1 the reason is that
when | am counting the number of permutations or the number of arrangements that I can make

out of elements from 1 to n where first element is in the first position, then I can move around



the other n - 1 elements in any way I like. So I can do that in factorial n - 1 ways therefore
cardinality of Al is factorial n, and the question is that how many AI’s are there are n choose 1
many that is n many AI’s. So cardinality of A2 is going to be also n - 1 and so on up to

cardinality of AN =n choose n— 1.
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Therefore, if I am considering the cardinality of the union AIUAN the first term which is ) i=1
to n cardinality of Al this will be n choose 1 n - 1 that is n into cardinality of n — 1, because all
the Al’s have the same cardinality. The second term is going to be higher less than J, Al NAJ the

question is that how many times I can choose these two distinct Al's from n distinct Al

So that number of times is n choose 2 then the first question is that what is the cardinality of
AINAJ and that happens to be n - 2 factorial, because after all I am fixing the i" element to the i"

place and j™ element to the j™ place. So I have got n minus too many elements left which we can



move around anyway we like. Therefore we will get n choose 2 into factorial n — 2, and then
further on I will have n choose 3 factorial n - 3 and so on. And at the very end I am going to get

-1™'n choose n of 1.
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Now if we go back to the expression that we started writing of dn we wrote that dn is equal to
cardinality of U minus the cardinality of A1U and so on up to AN which means that dn is
factorial n - n choose 1 factorial n - 1 - n choose 2 factorial n - 2 + n choose 3 factorial n - 3 +
which is equal to factorial n - n choose 1, and if you process it further we will get the final result
as factorial n(1 - 1 choose 1 + 1 choose factorial 2 - 1 choose sorry 1 — 1/factorial 1 + 1/factorial

2, 1/factorial 3 and so on.

And at the end we will have — 1" factorial n. This is the final result for the number of
derangements that we have on n positive integers from 1 to n. In this lectures we have studied
three examples in which principle of inclusion and exclusion has been used to solve certain
counting problems. And some of these problems are very fundamental to combinatorics and

number theory, we stop the lecture now thank you.
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