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In today’s lecture we will study some applications of the principle of inclusion and exclusion. 
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Now first let us look at this example which is based on the sieve of Erastothenes. Now the Greek

mathematician Erastothenes developed a technique of listing all the prime numbers between 1

and any positive integer n. So our goal is to list all the prime numbers between the number 1 and

a positive integer n. The procedure is as follows, one remove all the multiples of two other than

two.



Keeps the first remaining integer exceeding two which is the prime number three? Third step

remove all  the multiples of three except three itself four keep the first the remaining integer

exceeding three which will be the prime number. Then remove all the multiples of five except

five we have to continue in this way. What happens is that if we take a positive integer n let us

say n = 1000.

So we are looking at positive integers from 1 to 1000, and if we keep on repeating this process,

then ultimately we will we will be left with the prime numbers between 1 to 1000. Now our

problem is derived from this method which is called the sieve of Erastothenes, so let us look at

the problem.

(Refer Slide Time: 07:11)  

Count the number of integers between 1 and 1000 which are not divisible by 2, 3, 5, and 7. In

order to solve this problem we consider certain sets, first let U be the set of integers X such that 1

less than or equal to X less than or equal to 1000. Now we define some subsets of U A1 equal to

the set of elements of U divisible by 2, A2 the set of elements of U divisible by 3, A3 the set of

elements of U divisible by 5, A4 the set of elements of U divisible by 7.

Now we are looking at the set of integers between 1 and 1000 which are not divisible by 2, 3, 5,

and 7. We have in the beginning constructed four sets which are in fact subsets of U, the integers

between 1 and 1000 namely A1, A2, A3, A4, where A1 consists of all the elements which are



divisible by 2, A2 the set of elements divisible by 3, A3 elements divisible by 5, and A4 elements

divisible by 7.

Now if we consider the set A1 complement this is the set of all the elements in U which are not

divisible by 2. A2 complement is a set of all elements of U not divisible by 3. A3 complement is

a set of all elements of U not divisible by 5 and A4 complement set of all elements of U not

divisible  by  7.  Now that  means  that  our  set  under  consideration  is  intersection  of  all  these

compliments and this gives me the set of all elements in U which are not divisible by 2, 3, 5, 7. 

Now we can process this a little further by considering this is in fact A1UA2UA3UA4 and the

complement  this  is  by  using  Demorgan’s  law.  So  the  cardinality  of  A1  compliment  ∩A2

compliment  ∩A3  compliment  ∩A4 compliment  is  the  cardinality  of  the  compliment  of

A1UA2UA3UA4 which in turn is equal to the cardinality of U which is the universal set minus

the cardinality of A1UA2A3A4.

Now we will quickly calculate the cardinalities of A1, A2, A3, A4 and the cardinalities of AI’s,

intersections of AI’s taken 2 at a time 3 at a time and all at a time, and then use principle of

inclusion and exclusion to get the cardinality of the union of A1, A2, A3, A4. So we start our

process  by  checking  the  cardinality  of  A1  which  is  1,000/2  500,  A2  which  is  floor  of

1000/3=333, by the way floor of a real number is the largest integer less than that real number.

Then A3 1000/5 which is 200, and A4 which is the floor of 1000/7 which gives us 142. Then we

take intersections of AI’s for distinct I’s they can two at a time.
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So we get A1∩A2 is equal to floor of 1000/6 because if a positive integer is divisible by both 2

and 3, then of course it is divisible by 6 and the converse. Therefore we will have 166 A1∩A3

this gives me 1000/10 which is 100 and A1∩A4 for which is floor of 1000/14 = 71, then A2∩A3,

A2∩A4 and lastly A3∩A4 which is floor of 1000/35 = 28. 

Then we have to take the intersections taking three at a time so I will have A1∩A2∩A3, so these

are precisely the elements  which are divisible  by 2,  3,  and 5.  Therefore,  divisible  by 30 so

therefore it  will  be 1000/30 floor of that which is 33, then I  have got A1, A3, A4 which is

1000/70=14 and we have A1, A2, A4 which is 1000/42=23, and finally A1 this will be A2, A3

and A4 which is floor of 1000/105, so it is 9.

And the last one taking 4 at a time is and we can check that this is just the number 4. Now if we

remember  all  these  things  then  we  can  see  that  the  cardinality  of  A1  complement  ∩A2

complement ∩A3 complement ∩A4 complement is cardinality of U this one which is of course

1000  minus  cardinality  of  A1  500  plus  cardinality  of  A2  333  +  200  +  142  these  are  the

cardinalities of A1, A2, A3, A4.

Then subtract from this one the cardinality of A1∩A2 which is 166, - 100, - 71, - 66, - 47, - 28,

and then we start adding we add 33 + 14 + 9 so and + 23. And then again subtract the last

expression that is 4, if I do this then the number that I get is 222. And this is the number of

integers between 1 and 1000 which are not divisible by 2, 3, 5, and 7. Thus in this example we



see how we are using the principle of inclusion and exclusion to count some number of some

things. We move on to more serious examples, and this example involves Euler's  function.ϕ
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Now the first question is what is Euler's  function for that, first of all we have to know what doϕ

we mean when we say that two positive integers are relatively prime to one another. Let me write

the definition first two positive integers are said to be relatively prime if the number one is the

only common divisor that they have. Now suppose n is a positive integer n is defined as theϕ

number of positive integers greater than or equal to 1 and less than or equal to n which hard

relatively prime to n.

So in simple words we take a positive integer N and we count the number of positive integers

between 1 and n which are relatively prime to n and this number is called the n. Now what weϕ

are interested here is to get a get an expression of n which does not seem to be very easy. If weϕ

start checking some small examples and we see that 1 is of course 1, 2 is also 1, 3 is 2, 4 isϕ ϕ ϕ ϕ

also 2, because the positive integers less than 4 is 1, 2, 3, and 4 here one is of course relatively

prime to 4, 2 is not relatively prime to 4, and 3 is relatively prime to 4 and of course 4 is not

relatively prime to 4 so we have got we say 4 is 2, then 5 is 4 and so o.ϕ ϕ

So as such there is no direct pattern that that is obvious. So we have to find out an expression of

 if at all it exists incidentally this function is called the Euler’s  function. Now suppose P1, P2ϕ ϕ

up to Pk are the distinct prime divisors of M. We consider the universal set 1, 2, up to n and



denoted by U. We also consider a set like this Ai which is the subset of U consisting of those

integers divisible by Pi.

So we are looking for integers which are in U and not divisible by any of the Pi therefore n isϕ

equal to cardinality of A1 complement ∩A2 complement ∩ and continued in this way up to Ak

complement. We can manipulate and get this equal to U minus cardinality of U-A1UA2U and so

on up to Ak. Now again we see that the expression that we are getting is almost similar to the

expression that we got in the last example. Only thing is that we have to know how to count the

cardinalities of AI’s and intersections of different AI’s. 
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We base this on an observation if D divides n, then there are n/d multiples of D in U. This can be

verified and I leave it as an exercise, but if we take it to be true which of course we can verify

then we will get AI = n/Pi Ai∩Aj where I is not equal to J, equal to n/Pi Pj and proceeding in this

way finally we will get A1∩ and so on up to ∩Ak = n/P1…Pk. 
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And therefore, considering all this we will get n equal to n which is the cardinality of U andϕ

then -∑i=1 to k n/Pi this is essentially ∑i=1 to k cardinality of Ai and I put a minus over here to

obtain i=1 to k n, I have to put i=1 to k and j=1 to k with a condition that I is always less than j.

So this is Pi Pj and we will proceed in this way to ultimately the last expression, this is the

cardinality of Ai, I am sorry A1∩ and up to a k.

And this intermediate second entry is essentially high less than J ∩Ai∩Aj cardinality. Thus we

have basically used the Pj, I am sorry, we have basically used the principle of inclusion exclusion

in the last part of the right hand side to plot an expression. Now we can process this further and

write n -∑i=1 to k nPi + less than j nPixPj – and so on, at the end it is –1k n P1 up to Pk. And the

careful analysis shows that this is equal to n (1-1/P1)(1-1/P2) and so on up to n(1-1/Pk).

And thus finally we have got an expression for n which is n = n(1-1/P1)(1-1/P2) and so on upϕ ϕ

to 1-1/Pk, where n=P1α1, P2α2 and Pkαk where αi’s are greater than or equal to 1, and PI’s are

distinct prime numbers. Euler’s  function plays an important role in number theory and manyϕ

other applications of number theory. This example gives us an instance where the principle of

inclusion exclusion gets used in finding out a very fundamental function of number theory which

is the Euler’s  function. Next we will talk about counting certain kind of permutations by usingϕ

the principle of inclusion and exclusion. 
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Now these permutations that we are going to study are called derangements. Let me start by

defining derangements  among the permutations  of the numbers  from 1 to  n,  there are  some

permutations in which none of the n integers appears in its natural place. Now these permutations

are called derangements. Now what we would like to do is to count the number of derangement

of n numbers from 1 to n suppose dn is equal to the total number of derangement on the set 1, 2,

up to n.

Now just like the previous examples we are going to define some sets. So in general we define

Ai equal to the set of all the permutations on 1, 2, up to n which keeps the ith element namely I in

its natural place. And of course I will move i from 1, 2, up to n. Let you denote the set of all

permutations on 1, 2, up to n just to recall that this means that U is the set of all 1 to 1 on 2

functions from 1, 2, up to n to 1, 2, up to n. 

Now from the discussions that  we have done before it  is now clear that  dn is  equal to evil

complement  ∩A2 complement  ∩  and so on up to n complement, and which again in exactly

similar way as before can be written as cardinality of U minus cardinality of A1UA2U and so on

up to AN. We know that the cardinality of U is factorial n, and therefore we have to just find the

cardinality of A1U and so on up to cardinality of AN.

For that we will start checking the cardinality of A1 which is factorial n - 1 the reason is that

when I am counting the number of permutations or the number of arrangements that I can make

out of elements from 1 to n where first element is in the first position, then I can move around



the other n - 1 elements in any way I like. So I can do that in factorial n - 1 ways therefore

cardinality of A1 is factorial n, and the question is that how many AI’s are there are n choose 1

many that  is  n  many AI’s.  So cardinality  of  A2 is  going to  be also n -  1  and so on up to

cardinality of AN = n choose n – 1. 
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Therefore, if I am considering the cardinality of the union A1UAN the first term which is ∑i=1

to n cardinality of AI this will be n choose 1 n - 1 that is n into cardinality of n – 1, because all

the AI’s have the same cardinality. The second term is going to be higher less than J, AI ∩AJ the

question is that how many times I can choose these two distinct AI's from n distinct AI.

So that number of times is n choose 2 then the first question is that what is the cardinality of

AI∩AJ and that happens to be n - 2 factorial, because after all I am fixing the i th element to the ith

place and jth element to the jth place. So I have got n minus too many elements left which we can



move around anyway we like. Therefore we will get n choose 2 into factorial n – 2, and then

further on I will have n choose 3 factorial n - 3 and so on. And at the very end I am going to get

-1n-1 n choose n of 1.
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Now if we go back to the expression that we started writing of dn we wrote that dn is equal to

cardinality  of U minus the cardinality  of A1U and so on up to AN which means that  dn is

factorial n - n choose 1 factorial n - 1 - n choose 2 factorial n - 2 + n choose 3 factorial n - 3 +

which is equal to factorial n - n choose 1, and if you process it further we will get the final result

as factorial n(1 - 1 choose 1 + 1 choose factorial 2 - 1 choose sorry 1 – 1/factorial 1 + 1/factorial

2, 1/factorial 3 and so on.

And  at  the  end  we  will  have  –  1n factorial  n.  This  is  the  final  result  for  the  number  of

derangements that we have on n positive integers from 1 to n. In this lectures we have studied

three examples in which principle  of inclusion and exclusion has been used to solve certain

counting problems. And some of these problems are very fundamental  to combinatorics  and

number theory, we stop the lecture now thank you. 
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