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In this lecture we will be discussing on the transitive closure of a relation.
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Suppose R is a relation on a on a set a then we call the transitive closure of our another relation

which we denote by r + such that r is transitive our contents sorry r + is transitive r is contained

in r  + + r  + is  the smallest  transitive relation containing R. So there are three points  to be

remembered r + must be transitive second point to remember is R is a subset of r plus and the



third point to remember is that if T is a transitive relation on a such that our is a subset of T

which in turn is a subset of r + then t = R + if for R +the above three conditions hold then r + is

said to be the transitive closure of R.

Now our problem here is to find out a way of computing r+ from r we start by checking the

powers of our that is are composed by itself, so we consider our and then we define R 2 which is

also written as our composition are as a r 2 B if and only if there exists a 1 belonging to a such

that a related to a one and A 1 related to b, in this way we can extend the this idea to R  K so we

define r k which is essentially our composition and so on our composition and composition are

and this whole thing is k times alright as a Rkb if and only if there exists a sequence of elements

of a A1 up to AK + one all inside a such that a R a 1 a 1 or a 2 so on up to a k  + 1 are a here it is

b.

So the last element here is AK + 1 Rb all right, now the result that we are going to prove here is

our plus that is a transitive closure.
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R + that is a transitive closure of R is same as R ∪ r 2 ∪ and so on up to RK, but we do not stop

here we keep on going, so I just keep on taking powers of our and add in the ∪ and the totality

that we will we get is our plus that is what we claim here so I can in a compact notation write this

is equal to k = 1 to infinity R K. Now the question is that where is the proof and that is exactly



that we are going to do now we will write for the time being R’ as the ∪ k equal to 1 to infinity

Rk and we will prove that R’ is indeed the transitive closure of R.

So to do that first of all we have to prove that R’ is a transitive relation 1 suppose a R’ B & B R’

C for some A B C belonging to capital A this means that there exists I, J belonging to the set of

positive integers such that a Ri and b Rj this is because R’ is ∪ of our all are raised to the power

case and therefore if a is R’ B then of course there is some element I for which a is R ib and

similarly for be B and C.

Now by definition of the power of relations what we have here is that there exists a one up to a i

+ 1 and B 1 up to be j + 1 all belonging to a such that all right we have a chain starting from a

related to a one even related to a two and we proceed in this way to a i - 1 related to b but what

happens here that the chain does not stop here we can pick up from B which is related to B 1 and

B 1 related to be 2 and so on and ultimately we come to bj + 1 related to C, and therefore if we

combine this whole chain then we will get a related to R i + j c but this means that a ∪ k equal to 1

to infinity Rk C which in turn means that a r - c thus at least we have proved that R’ is transitive.

The second point that we have to prove is somewhat easy because we have to prove that R is a

subset of R’ and that is true because after all R’ is ∪ of our and other powers of our therefore it is

easy to check that R is a subset of R’. So I will write here that it is easy to check.

Next we move on to proof probably the most difficult part of the proof that is R’ is the smallest

transitive relation containing R.
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We write it as the 0.3 now let us think that how to prove this fact, so I would like to prove that R’

is  the smallest  transitive  relation  containing  art  that  means  I  have to  prove  that  there is  no

relation containing r which is transitive and properly contained in R’. So let us suppose that we

have a relation which is which let us denote by T and which is sandwiched in between our and up

R’. 

So here suppose T is a transitive relation such that R is a subset of T which in turn is a subset of

R’ what we will prove is that if such a thing happens then t is forced to be equal to R’ and that

proves that there can be no proper subset of R’ which contains our and transitive at the same

time. Now to do this we have to prove that T = R’ and that that means a set theoretical et is a

subset of R’ and R’ is also a subset of T, now this part of the chain already tells us that T is a

subset of r prime so there is nothing to prove.

So we have to prove the other way round that R’ is a subset of T to do that we have to start with

an element of R’, now suppose we have an element of R’ we denoted by A B well technically we

can  write  A B belongs  to  R’ which  essentially  means  that  a  is  R’ be  right  and this  means

remembering that R’ is nothing but K starting from 1 to infinity RK all right, so since a B belongs

to R’ that therefore a B has to be in some R I for some positive I so therefore I can write a RI B

where I belongs to z+ that is positive integer and since a is Rb we will have  i + 1 elements from a

such that we can build a chain of relations as we have seen before.



So this implies that there exists a 1 a 2 so on up to a i  + 1 all belonging to a such that a R a1 a1 r a2

we proceed like this and then at end we have a i + 1 R B, now in the next step we realize that by

our assumption we have are a subset of T since our is a subset of T all right since our is a subset

of T if we have two elements related through R then they are also related to T. So therefore we

can just change it to a T a1 a1 ta2 and we proceed like this and ultimately we will have a i + 1 t b

now we know something more about T we know that t is transitive,  so T is transitive YT is

transitive because we have assumed it to be so.

So since t is transitive what we realize is that we can kind of collapse this chain here to just a t b,

why? Because if you consider these two points in the chain since t is transitive we can write a t a

2 the next element will be a 2 t a3 and if well there is a next element to this then it will be a 3 t a

for and ultimately we will arrive at a i + 1 t b but then I can collapse it again we can combine

these two to write a t  a3 and proceed and ultimately get AI + 1 T b this is all  because t is

transitive and therefore at the end we will end up with ATB, but what does it mean?

This means that the pair A, B is an element of T, and therefore we now check the whole chain of

arguments we started with assuming that the ordered pair a B belongs to R’ and we end up by

deriving that the ordered pair a B belongs to t this means that R’ is a subset of T now we check

that we have already observed that T is a subset of R’ and that is by the definition and we have

derived that R’ is a subset of T all by using the property that T contains R T is transitive and T is

inside R’. Therefore we can write that T = R’ and this proves that R’ is the transitive closure of R.

Now as  we have  started  by  writing  transitive  closure  of  relation  by  our  to  the  Power  Plus

therefore we can write in symbols that are prime is equal to R + so that is to say again the same

thing that R’ is the transitive closure of R.

Now we will see that this whole thing becomes a simpler if our underlying set is a finite set we

need to simplify this a whole scenario because as we have seen that okay if you give me a

relation R then r + is a ∪ of a infinite sequence of elements.
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Namely r ∪ r2 ∪ and so on some maybe r to the power k and so on which we are writing as ∪ k

from 1 to infinity AR k well okay theoretically we have proved this, but it is it is not necessarily

true that we will be able to complete the computation in general because we have a we have to

compute ∪ of infinitely many elements therefore we need something simpler and we would like

to have something simpler for at least finite cases and indeed we have a much simpler result

when the set a contains only n element which we will write as a1 a2 up to a n okay.

So by putting a within two vertical lines we denote the number of elements of a and in this case it

is n, what we will show first is that suppose two elements in a let us denote them by A and B are

related by some r to the power I of B then we will as we have seen before have a chain of

relations, so to say connecting A to B. So we will have elements like a  1 up to a I will rather

change the definite change the notation over here because I am writing the elements of a as a 1 a 2

and all these things.
So what I will be doing instead is that I will say that suppose they are we when we have got a R ib

then we have some b 1… Bi – 1 belonging to A such that a Rb1 b1 Rb2 up to bi - 1 r be here we

have to remember few things that this bi is has nothing to do with the ordering ai and I may be

much larger than n, so and another thing that we have to not over here that I have not told that be

eyes are distinct they may repeat. So I have essentially a sequence of elements b1 b2 up to b i + 1

where there may be repetitions and we may call  it the sequence of internal the points or the

sequence of interior points.



So I will be calling them sequence of interior points alright, now a an element from the sequence,

let us say bj will be coy will be called interior point, and this whole chain starting from a and one

after another a sequence of alternatively are and some bi this whole chain is called a path from A

to B path from A to B in we can call it in a with respect to the relation R, so I can write it I will

just say it is a path from A to B if we assume that we know a and we know are now there is a

there is an important parameter associated to this path which is called the length of this path is

simply I, why I? Because we see that this one we have got one then two and like this.

So we will have I number of places where we are using the relation if we have i - 1 interior

points please note again that this interior points need not be distinct if we think in terms of

digraph this is very intuitive what we have here essentially a .a and a .B in a or in the set of

vertices when we are looking at this whole setup as digraphs then we have a and B and then we

have some let us say be one and a relation a related to b1 means that we have a directed path then

we again have something else be too then we have B 3 then we have let us say be four but this is

where what I am coming to that this these interior points need not be distinct.

So from before we may go back again to b2 but then this b 2 is also b 5 and from be five we will

go to be six and similarly we will proceed till we get to be from be i + 1 and the number of links

that we have used is essentially the length of the path. Now what we will notice here that if along

the path a vertex or an element or a point of a is repeated like in this portion b2 to be five we can

essentially cut this loop out and in the process reduce the length of the path we can do this more

systematically like here.
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Please see that I am first writing the path this is a and this is a rb1 then a r sorry let me remove

this right and then we have b1 or b2. Let us suppose we come to some b L + 1 r BL and then BL

are be l plus 1 again we proceed then at some point we get another element let us say call it b k +

1 RB k and then we have BK r b k + 1 and we proceed again till we reach the end of the path

which is B i + 1 r and the last one is B, we have a path like this and suppose b l = B K L is

strictly less than k then as we have seen in the diagram.

But in this case more formally we can write a path from A to B as a starting from b1 and so on

till we reach be L + 1 R and here instead of BL I can just write BK the reason is that be l and BK

are same and then continue in the same sequence to get BK b k + 1 and so on up to be i + 1 r b

right we get this. Now of course this is a path from A to B of length I we have obtained another

path from A to B of length strictly less than I because L < K and well what we have done is that

we have cut out to two equals in interior points just merge them and then gone on with our path.

Now we can keep on doing this process and at the end we will have a path which does not have

any  repeated  interior  points  that  means  a  path  such  that  all  interior  points  are  distinct,  so

continuing in this way we can arrive at a path from A to B such that all interior points r distinct.

Now let us go back to the set on which we are considering the relation this set has got only n

elements a1 up to a n and so if we take any two points in a if they are connected by a path we can

we know that we have already seen that we can and we can always do that connect a and B



through a path where interior points are distinct but these interior points are going to come from

the set itself and nowhere else.

Therefore if a and B are different and both are in a the number of possible interior points that we

can get is n – 2, so any path can be reduced to a path containing n  - 2 distinct elements of a if a

and B are not equal therefore the length of the path will be n = 1 suppose a and B are equal then

we are left with n  - 1 elements of a and therefore at most we can have a path with n - 1 distinct

interior points in fact it will be a loop starting from a point of a and going through the points of

capital a and go back to the original point.

So the length of this path will be n, so in this case if we have two elements if they are at all

related by some r I they are related by some R j where J is strictly ≤ n and ≥1 therefore R + which

is ∪ k = 1 to infinity are raised to the power K is simply the ∪ of a finite set of relations this,

now we can do computation with this suppose we have to find out the matrix corresponding to

the relation R +.

Then it will be the matrix corresponding to the relation R ∪ r 2 ∪ and so on up to R n which in

turn is the matrix Mr or the matrix Mr 2 and so on up to the matrix Mr
n  which in turn is the matrix

Mr or the matrix Mr 2 the matrix Mr
n where this Mr i will mean Mr, Mr and so on up to Mr i times

where this particular operation is the operation of binary matrices that we have discussed before

which corresponds to the composition of the relations this we have covered in previous lecture.

So we have this situation, now we can start checking an example yeah.
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So let us take a set and relation, so now my set a is a b c d and e and the relation r is given by (A,

A) ( A, B) (B, C) (C,D) (C, E) (D, E) our problem is to find r + in the first step we construct M r

now if we check carefully we will see that Mr is 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 and the last

row is all 0 like this, this we have to find out by finding the matrix corresponding to our that we

have discussed in a previous lecture. 

Now we keep on considering the powers of this relation where Mr 2 is nothing but Mr x Mr with a

special rule that we have discussed before and that will give us 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 and 0

0 0 0 0 along with 0 0 0 0 0, so this so I will request you to check all the calculations and I will

tell you one way of doing this when we are trying to compute M r square which is Mr product Mr

what we can do is that we can just take matrix multiplication as such.

And then at each entry we have to check that whether the entry is 0 or nonzero if the entry is 0

keep it as 0 if the entry is nonzero change it to one and then you will get a matrix like this and if

you try the same rule with Mr 3 we will get 1 1 1 1 1 0 0 0 0 1 and rest of the rows all zeros and

in exactly the same way multiplying Mr three four times by using the same product we will get

Mr
4 which is 11 111 and rest of the rows are zeros alright.

And then lastly we have M R 5 which is again same as M R
4 alright and then our job will be to

take the ∪ of all these relations and in the matrix form it will be M R + = Mr or Mr 2 or Mr
3 or M

R4 or M R5 and this if we check carefully peas 1 1 1 1 1 0 0 1 1 1 then 0 0 0 1 1 0 0 0 0 1 and the

last row is 0 0 up to0 all zeros.
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So this is the matrix corresponding to Mr + then we have to construct the relation corresponding

to this matrix for that again we will use whatever we have studied before we remember that in all

these cases we have not tampered with the ordering of A, therefore these columns are labeled by

a b c d e and the rows are labeled by a b c d e therefore we see that the entry corresponding to a a

gives one.

So it is in the relation so a is in the relation a B is also in the relation AC is also in the relation ad

is in the relation a e is in the relation we come to the second row where we have B we see that b

a the corresponding entry is 0 so it is not in the relation BB is not in relation but bc is in the

relation so we will write B ,C then we write B , d we write B, E then we come to the third row C

a is not in the relation CB is not in the relation CC is not in the relation but it starts from CD CD

and CR in the relation so we hide CD CE and lastly we see that DE is in the relation and there is

no other element in the relation, so ultimately we have our plus as a set and set it is a subset of a

Cartesian product A.

Now the problem with this technique is that we have to do lot of work as we have seen that each

time we have to keep on multiplying Mr with whatever we have obtained before what we are

doing is probably little less complicated than matrix multiplication but it is ultimately the same

in terms of the number of number of elements that we have to compare in the worst possible



case, therefore we would like to know whether we can do it in a faster way and indeed there is an

algorithm called what shells algorithm which does it in a much more faster and convenient way

this algorithm we will study in the next lecture for today this is the end thank you. 
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