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In today’s lecture we will be discussing on closures of a relation now suppose I have a set A.
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And a relation are on the set A that is R is a subset of A x A now we have already seen that

relations satisfy certain properties like reflexivity, symmetry, transitivity, anti symmetry and so

on so, we will be particularly discussing on three properties reflexive symmetric and transitive so

reflexive symmetric and transitive properties however to start with we will just take a general



property let us say P that is let us denote the property by P suppose P is a property of a relation in

particular P can be as i said reflexive symmetric or transitive property.

Now a generalization are may or may not have P so that is our starting point, so suppose we are

considering a relation we which does not have a problem which does not have the property P

then we may ask that I would like to extend the relation to a relation and this extension should be

minimal  such  that  the  extended  relation  has  the  property  P, for  example  if  the  property  is

reflexivity or let us sell reflexive property and suppose R is my relation which is not reflexive I

would like to extend it extend R to a relation let us say R sub B such that that R sub P is reflexive

and it is a smallest reflexive relation containing are now in general let us let us give a definition

with respect to the general property RP and a general relation R.

The closure of a relation R on a set A the closure of a relation R on A set A with respect to a

property P say is the smallest relation denoted by RP such that r is a subset of RP which in turn of

course is a subset of a cross a, now here there are certain issues that needs clarification first of all

the point which is more or less clear that what we mean by a relation containing another relation

because after all we have defined relation to be a subset of a cross a on which it is defined and

then if I say that the relation RP is contained in our that means R is a subset of RP as a set.

But a more A more critical point is that this RP has to be minimal with respect to the property the

question is what do we mean by that we are coming to it shortly, but let us write again the same

thing more explicitly  so suppose RP is  the closure of R with respect to P then what are the

properties that are P must have in other words suppose RP is the closure of R with respect to the

property p then one the first thing is that RP must have the property P then second our must be a

subset of RP which in turn is a subset of a cross a and third.

If we consider a relation s with property p containing our then and contained in RP then s must be

equal to R P if s is a subset of a cross a having property P and R is a subset of S which in turn is a

subset of RP which in turn is a subset of A x A of course then S must be equal to R P and the third

point specifically say what we mean by the minimal extension it means that we have a relation R

here and then we have A x A and RP is somewhere in between such that R is a subset of RP + RP

is a subset of A x A.



It is to be remembered that RP satisfies the property P now suppose we have some S which also

satisfies the property P and which is a superset of R as I have drawn here and subset of RP then

this will force S to be equal to RP, so that means that we have our the relation R over here and RP

on the top of it and which satisfies P, but there is no and there is no relation in between R and R P

satisfying P and properly contained in RP so RP in that sense is the minimal extension of our

having property P now we will start looking at closures of specific relations that is closures of

relations with specific properties the first property and probably the easiest property that we have

in hand is reflexivity.
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So we consider now reflexive closure of a relation suppose R is a relation on A the reflexive

closure of R is a relation RC say such that RC is reflexive and suppose S is any reflexive relation

such that R is a subset of S which in turn is a subset of RC which in turn is a subset of A x EA then

S equal to RC thus we see that this is exact translation of the general case that we have discussed

just some time back considering a general property, now the property is no more general this is

the reflexivity property and we have said what we mean by reflexive closure of a relation.

Now we ask the question how to find how to find the reflexive closure of relation the reflexive

closure of a relation are on A, so let us be very specific that we have said suppose A is the relay

is the set on which relation R is defined and we would like to know the reflexive closure and of

course if R is reflexive the reflex reflexive closure of R is R itself, but we do not know that



therefore we define a relation which we denote by capital ∆ and which is essentially the Equality

relation.

So capital ∆ consists of all points a,a such that a belongs to a or in other words i can write it

contains all pairs a, b such that a,b belongs to a and a equal to B alright, so this is the Equality

relation now what we do is that we simply augment if at all necessary this a, a type of elements

to our and we call that that is RC that is a reflexive closure of a relay of the reflexive closure of R

and i do not think i need to explain anything more because it is very straightforward RC is equal

to our union capital ∆ the Equality relation.

Now suppose we are given are in terms of a matrix that is instead of R we are given the matrix

corresponding to r that is MR and then it is very direct that the Equality relation is nothing, but

the identity matrix all right so only the diagonal elements will be one and rest will be zeros so we

are assuming here assuming that A is of size n all right so ∆ is this thing the identity matrix and

MR of course is a is a matrix the matrix corresponding to R and if you want to know the matrix

corresponding to RC.

So that is MRC we can just write this is equal to MR U ∆ because we have already told that RC is

R U ∆ and we know that from our previous lecture that this is equal to MR or M∆ and M∆

essentially is the identity matrix therefore this is MR or In where In is equal to the n/n identity

matrix alright, so this is easy but well this somehow captures a basic idea of closure that we just

add new, new elements to the relation original relation R to maximally extend it to its closure

with respect to certain property.

And we have also seen here that if we write in terms of matrices sometimes it is possible to write

the whole computation very neatly because we just know, now that we have to just take the or of

the identity matrix to the original matrix of the relation and the matrix that we get is a matrix

corresponding to the closure, now let us look at an example.
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Right now let us consider A to be the set 1 2 3  and 4 and we consider a relation R equal to say

1,1 then 1,2 2,2 not me not linking this one is the link these are I am doing it, but now it will so I

have to press here it was not happening actually when I press there but it was not happening but

anyway alright, so this is 3,4 okay now suppose we want to find out the reflexive closure of R

well then we have to write down the Equality relation which is very straightforward because it is

1,1 2,2 then 3,3 and then 4,4 4, 4 all right now we take RU∆ this gives us 1,1 and then 1,2 and

then 2,2 then 2,3 then 3,3 3,4.

And lastly  we have 4,4 of  course this  is  the reflexive  closure if  we now look at  the  graph

corresponding to this relation then we will see that we have another way of looking into the

reflexive closure, so let us look at the graph corresponding to R defined on A so we have got 4

vertices we label them by 1 2 3 and 4 and here we notice that 1,1 is there 1,1 means there is a self

loop from one to one and then we have a B we have an edge from one to two and then we have

an edge from 2 to 3.

And then we have 3 to 4 this is the original relation given by the given by our and finding out it

is reflexive closure is just putting self loops at each vertex that makes each of the vertex related

to itself and where there is already a self loop, that is in this case one we do not have to do

anything  so  this  is  the  reflexive  closure  of  the  relation  and  a  relation  R  and  the  graph

corresponding to it.
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Alright again we start with R suppose R is a relation on a set A the symmetric closure RS of R is

a symmetric relation containing R is a symmetric relation containing are such that if S is another

symmetric relation satisfying our subset of S subset of Rs subset of A x A then S = RS, now we

come to the question of how to find the symmetric closure of R in order to do that we will first

start by defining another relation corresponding to R which is called the inverse of our we denote

it by our inverse and define as a R -1 b if and only if bRa now at this point we must not confuse

our inverse with compliments of R.

Since R is a subset of A x A there is a set theoretic complement of our which we usually denote

by R over line which is essentially A x A – R, now when we translate it in the language of

relations this will mean that a R complement be if and only, if a is not related to be this is R

compliments but we are not here defining compliment of R we are defining our inverse where we

say that A is related to B if B a by our inverse if B is related to A/R, now what we claim over

here is that the symmetric closure of a relation R that that we are denoting at R sub A is nothing

but R U R inverse we have to see why it is true.
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So first we have to show that R sub S is symmetric for that let A R sub S be now this implies that

A R U R → B which implies that A are B A R → B which in turn implies that be R →  A well that

is the definition of R →  we have said that a R B if and only if a RB R →  A, so since here we

have got a RB here therefore i can write B R → A since A R →  B, if and only if B are a now R be

our a therefore we see that this is B area or B R →  A, but that means that B is R U R which in

turn means be RS.

A because RS is RUR inverse therefore we see that A R sub S B →  B R sub S A but that is the

property that RS has to have if it is symmetric and, so RS is symmetric the next property that we

have to show is that R is a subset of Rs, but that is extremely straightforward over here because

RS U of R & R inverse and therefore we can write that R is a subset of R U R inverse which is

equal to RS, now we come to the third property which is the minimality so now let us suppose

that we have a relation let us call it P which is symmetric and which is sandwiched between R

and T.

So suppose T is a symmetric relation on a such that R is a subset of T which in turn is a subset of

RS which of course is a subset of A x A, now let us start let us start from let us let us try to prove

that t is equal to RS we already know that d is a subset of RS clearly t is a subset of RS we have to

prove the other way round.
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So we start it in a fresh page right, so let us write again so we have are a subset of T which in

turn is a subset of Rs of course T is a subset of Rs it is already known now i will start from RS

side, so suppose that A is related to B by RS now this implies that A is related to B by R or A is

related to B by R →  this is because RS is a subset of our union or inverse now this implies that a

is related to B that is all right or B is related to A okay, because that is by the definition of R → 

we know that A R →  B both the →  B.

Area so therefore we can write that a SB or b S a why since R is a subset of T, so just let me

correct this is not S but this is T so instead of S there I must write P this is T because since R is a

subset of TA RB means A TB be are a means B T a therefore we have come to a scenario where

A is related to B or B is related to A so therefore through R therefore since R is a subset of T I

can say that a is related to B by T because it is related to be by R and R is a subset of T and or B

is related to a/T.

Now  we  started  with  the  assumption  that  T  is  symmetric  starting  assumption  is  that  T  is

symmetric okay, so therefore a TB or Tb here this thing PTA is aTB because T is symmetric and

therefore we have the same thing we have a Tb or Tb therefore this →  that a Tb, now this means

if we now notice from the beginning that is this to the end we have proved that a RS sub st → Tb

that RS is a subset of T, but already we knew that T is a subset of RS now we have got RS is a

subset of T therefore we have T is equal to RS.



So this is what we wanted to show to prove the minimality of RS and this is what we have shown

now we will  consider the matrix corresponding to RS,  so in general we will consider matrix

corresponding to a so what we want to consider now is how to call how to construct the matrix

corresponding to RS, so first we have to know how to construct the matrix corresponding to R → 

now if you see that a matrix MR.
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Which corresponds to the relation are defined on a is given by mij  n x n where the number of

elements in A is n on which are is defined and further to specify the matrix we need to write the

elements of a in F in some order which we fix afterwards, so suppose when we write in that order

the elements of a is a one up to a n then mij = 1 if aI is related to aj is 0 if a I is not related to aj

now suppose we consider the matrix corresponding to MR inverse, now suppose we denote this

matrix x mij  bar sorry mij’ now mij ‘ is defined in this way mij ‘ = 1 if ai is our inverse aj that

implies aj Rai and 0.



If AI is not R →  aj which implies both ways if aj is not in not related to ai that means that M

prime sub ij = Mji because when aj is related to ai then M sub ji is equal to 1 well then M prime

sub ij is one therefore this relation holds and when j is aj is not related to a I then m ji 0 and same

as M prime sub ij therefore this is same thus it is clear from this that M sub R → that is the matrix

corresponding to R inverse is equal to the T of the matrix corresponding to R because in the new

matrix the ij is switched that means rows and columns are switched therefore we have this and

now since we know that RS is equal to R U R.

Inverse the matrix corresponding to RS is the matrix corresponding to R U R inverse which is

equal to the matrix corresponding to R or the matrix corresponding to R -1 which in turn is equal

to the matrix  corresponding to R or the matrix  corresponding to RT this  gives a particularly

straightforward method to construct the matrix corresponding to the symmetric closure of any

relation and then of course from that we can write the relation or the digraph corresponding to

the relation very quickly.

Next we come to the question of finding the transitive closure of a relation the transitive closure

of a relation is a relation which is transitive and which it means no transitive relation between

itself and the relation under consideration.

(Refer Slide Time: 50:09)

So transitive closure of R on A is a relation we usually define transitive closure as R superscript

+ we I will read it as R + is a relation R + such that R + is transitive and any relation T on A



which is transitive and R subset t subset R+ of course all subset of a Cartesian product a is equal

to R + that is T is equal to R + so again we have the problem of finding out the transitive closure

of a relation to do that we have to recall few things that we have studied in previous lectures, so

if we have a relation R.

Then we can take we can compose this relation R2 with itself several times for example by R2 we

mean the relation R composition are now, when we say that a that an element A is R2  B this

means that there exists an intermediate element C1 let us say in the set a on which R is defined

such that A R C1 and C1 R be now suppose we raise R3then AR QB will mean that there are

elements c1 and c2 belonging to a such that A are c1 c1 RC2 and c2 are be if we go forward like

this then.

We can define the general case that is let us say RK B all right this means that there exists c1 c2

so on up to c k - 1 belonging to a such that A R c1, c1 Rc2, so R c k – 2 rc k - 1 then see k - 1 R

be so we see that we can have sequence of powers of are defined in this way that is our r2 r3 so on

RK and so on,  we can construct  a  relation  by taking the union of  all  these relations,  so we

consider the relation that we get by taking R U R R2 U R3 union moving in this way RK U so on in

a compact way.

We can write this as I = 1 to ∞ Ri  and what can be proved is that this is same as R + that is the

transitive closure of R we will stop here in today's lecture and we will continue discussions on

closure of relations particularly closures particularly the closure of transitive relations in the next

lecture thank you.
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