
INDIAN INSTITUTE OF TECHNOLOGY
ROORKEE

NATIONAL PROGRAMME ON TECHNOLOGY
ENHANCED LEARNING

(NPTEL)

Discrete Mathematics

Module-05
Graph theory

Lecture-03
Walks, paths and circuits. Operations on graphs 

With
Dr. Sugata Gangopadhyay

Department of Mathematics
IIT Roorkee

In this lecture we will discuss walks, paths, circuits or cycles in the context of graphs and then

we will move on to discuss operations on graphs. So first walks, paths, and cycles.
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Walks, paths and cycles or circuits in a graph, now suppose we consider a graph like this then we

may like to traverse on this graph for example starting from let us say this vortex let us say V1, I



may like to go to V2 call it V2 let us call it V3 V4 and V5 suppose there are some multiple edges as

well like this suppose I want to go from V 1 to V through V 2 through this edge say even then I go

from here to V 5 let us say this is E 2 then we go from V 2 V 1 let us say this is E 3 then I may like

to take another edge let us say E 4 and reach V 2 again and then possibly go to V4 through another

edge let us call it P 5 then what do we have we have what is known as a walk.

Now the question is that how do we specify a walk here we see that we have started from one

vertex which is called V1 and move to V2 through one edge e1 and then from each V from V2 we

have taken another edge E2 and moved to V5 from V5 we have taken one more edge E3 and move

to V 1 again and then from V 1 we have taken an edge e 4 and move to V 2 again and then from V

2 we have taken an edge e 5 and move to V 4.

So  this  whole  sequence  of  actions  that  we  have  done  can  be  specified  by  a  sequence  of

alternating vertices and edges starting from a vertex and ending at another vertex not necessarily

distinct from the initial one. Now this is what we will call a walk, the question is that whether in

a walk a vertex can be repeated the answer is yes a vertex can be repeated like we see that V1 is

repeated twice over here and V2 is also repeated now another question is that can an edge be

repeated the answer is in our definition we do not allow edge to be repeated in a walk in the

literature in some books you will find that people allow reputation of edges as well in a walk and

define something as a trail which does not repeat edges.

But in our definition we are fixing that we are not going to repeat edges because if we repeat

edges suppose here when we are coming again to V1 and we are going to V2 by E4 suppose that

instead of E4 we had taken E1, then suppose instead of E for this is E1 then we could have started

the whole process from here itself. So what we see is that if a edge is repeated then whatever

happened in between the repetition of two edges can be removed and we will get essentially the

same thing this will let us remove certain cases like this like suppose I have got a graph over here

and suppose I have got some VI and VJ and there is some edge Ek and suppose I am spec suppose

I allow repetition of edges then I will I can have a sequence like VI EK VI EK V j EK VI and so on

that is I go from here to here to here to here to here like this.

I do not want such a thing therefore in our box we would not get edges repeated we can also do

away with repetition of vertices but for the time being we are not going to do that and we will we

will introduce a different terminology for the walks where vertices are also not repeated, but now



let  us write the definition of walk in a formal way, a walk in a graph is defined as a finite

alternating sequence of vertices and edges beginning and ending with vertices in such a way that

each edge is incident with the vertices preceding and following it with we have to also specify

that no age appears more than once in a walk no edge appears more than once in a walk although

vertices may repeat so that is a walk.

Now the vertices at which a walk begins and a and ends, so there are two special vertices in a

walk a vertex at which it begins and a vertex at which it ends these two special vertices are called

the terminal vertices of the graph. The vertices with which a walk begins and ends are called the

terminal vertices now we have to be careful that the terminal vertices may not be distinct, so

there is a classification of walks in terms of the fact whether the terminal vertices are distinct or

not if we have a walk in which the terminal vertices are distinct then they are then it is called an

open walk a walk in which the terminal vertices are distinct is called an open walk a walk.
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A walk in which terminal vertices are same is called a closed walk, so we have got the concept of

an open walk and a closed work. So for example if we look at the graph that we were dealing

with again, so I have got a graph like this if I start off from one vertex like this go to vertex like

this then go to like this for example I go like this then this then come back like this like this then

go like this and come back here starting from here I arrive here it is a it is a closed walk now if I

start from here and let us say move like this and come here then it is an open walk.

Now we come to the concept of a path and this answers our question of what happens when a

walk is such that no vortex is repeated a part a wok or more specifically an open walk.
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In which no vertex is repeated is said to be a path now then what is a cycle or a circuit cycle or

circuit we will in use these two words synonymously a cycle is a closed walk a closed walk in

which no vertex is repeated he is called a cycle or a circuit.  Now once we have known the

concepts  such as  walk  path  and circuit  or  cycles  we are  ready to  investigate  the  idea  of  a

connected graph or a connected component of a graph the basic interest here is that given two

vertices in a graph I would like to know whether I can move from one vertex to the other through

some walk or a path.

So if in a graph I can do that for any two pair of vertices then I call that a connected graph, and if

I cannot do that then it I call that disconnected graph. But whatever be the case even any graph I

can find out so called connected components that is I can start from a vertex and see how much I

can cover starting from that vertex call that a connected component and then like that find out all

the  connected  components.  So  let  me  write  the  definitions  connected  graph  a  graph  G  is

connected if there is at least one path between every pair of vertices of G.

A disconnected graph consists of two or more connected sub graphs each of which he is called a

connected component. Now this is easy to see suppose I have a graph like this, now this part is

definitely a connected sub-graph and this is also a connected sub-graph my graph consists of the

complete  set  of  vertices  and edges.  So these  are  connected  components  of  the  graph under

consideration.



Now there are some results related to the connected components connected and disconnected

graphs that we will see right now. 
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Now we move on to some theorems theorem a graph G is disconnected if and only if it is vertex

set V can be partitioned into two non-empty disjoint subsets V1 and V2 such that there exists no

edge G whose one end vertex is in V1 and the other end vertex is in V2. So this is somewhat very

straightforward  theorem which  says  that  if  you have  a  disconnected  graph then  your  set  of

vertices are going to be partitioned into two subsets and you do not have an edge from starting

off from one of those subsets and ending at and the other one.

Now we move on to the next theorem which states that if a graph has exactly two vertices of odd

degree  then  there  must  be  a  part  joining  these  two  vertices  proof.  Now let  us  look  at  the

statement, now we are considering graphs with only one restriction that in this graph there are

only two vertices of odd degree and rest of the vertices are of even degree now suppose this

graph is connected then there is no problem because then of course any two vertices have a path

joining them and therefore these two odd vertex odd degree vertices have paths joining them.

So I can write if the graph is connected there is nothing to prove, now suppose that it is not

connected then by the previous theorem I can split the set of vertices into two disjoint sets such

that there is no edge connecting an element of the first one with the second one. So we the set of

vertices is equal to V 1 ∪V 2 where R even ∩ V 2 is empty and V is the set of vertices. Now I can



keep on doing this process and ultimately end up with connected components.  So ultimately

what can happen is that the set of vertices V is split up into let us say some V 1 ∪V 2 ∪and so on

up to some VK where VI ∩ VJ is 5 for I  not equal to J and VI is  connected is a connected

component.

Now we have repeated this process over and over again and therefore we know that there is no

edge between VI to VJ, now the question is  that  where the odd degree vertices  will  rely, so

suppose small v-0 and small Z with 1 are the two odd degree vertices now what we claim is that

these odd degree vertices cannot lie on two different components because if that happens then

that component as a sub graph will have only one odd degree vertex which is not possible by

using the first theorem that we have proved which true which says that any graph in any graph

the number of odd degree vertices have to be even.

Suppose that V0 belongs to VI and V1 belongs to V J for some I not equal to J then VI contains one

odd degree vertex which is not possible therefore v-0 and V1 must be in the same component

hence there exists a part connecting them which is what we wanted to prove. Now we move on

to another theorem related to connectedness which gives me an upper bound of the number of

edges that a simple graph with K connected components can have, now let us move on to the

theorem.
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A simple graph with n vertices and k components can have at most n - K x n - k + 1 / 2 edges

before going into the proof let us recall what we mean by a simple graph a simple graph do not

add a simple graph does not admit self loops and multiple edges or parallel  edges. Now we

realize that this theorem is not going to work for a graph in general because even if I have got a

graph with only two vertices I can keep on increasing parallel edges or self loops and blow up

the number of edges.

So here I am allowed to have only one edge between two vertices if at all and no self loops are

allowed  and in  this  context  we see  we say  that  if  we have  if  we  have  K components  the

maximum number of edges is given by n  - K x n  - k  + 1 /2. Now we start off by assuming that

we have a graph with K components and the number of vertices in the Ith component is N I where

I varies from 1 to K. 

So let the number of vertices in the Ith component be Ni and I varies from.. K therefore we have

N1 + N2 + up to so on up to NK = N we will use an inequality from algebra which is this that Σ I =

1 to k Ni 2 ≤ n 2 - K - 1 2 N - K you will use this a little later. Now let us check this picture, so I

have split up my graph into K components 1 2 and K and inside these there is a connected sub-

graph inside this there is another connected sub-graph inside this another connected sub-graph

ensue or so on and the number of vertices is n1 number of vertices n 2 and here number of vertices

NK.



I question that what is a maximum number of edges possible when you have got in 1 many

vertices the answer is n 1 x n 1  - 1 /2 the question is why it is exactly the number of ways I can

choose 2 vertices out of N 1 many vertices so that is n 1 choose 2. So I have got max n 1 x n 1  -

1 /2 many vertices over here sorry too many edges over here it is n 2 n 2  - 1 /2 many edges max

so here it is N K x NK  - 1 / 2 many edges.

So I have to sum up all these things then I will get some like this which is half of Σ I = I to k Ni I

– 1 which is well equal to ½ of Σ I = 1 to K Ni 2  - ½ of Σ and I = 1 to K and I realize that I can

use this in equality and if I plug in this inequality I am going to get ½ n 2  - K  - 1 x 2 n  - K  - n /

2 because this sum is equal to N and finally if we simplify we will see that we'll get n  - K n  - k

+ 1 and which is the answer thus we have got an upper bound on the number of edges of a simple

graph with n vertices and K components. These are more or less the results on connected graphs

connected components that we study in this course and now we move on to another topic called

operations on graphs.
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Now we can think of several operations on graphs when we consider graphs as objects these

operations are  ∪∩ then ring sums and then deletion fusion and so on. So I will define these

operations one by one and try to provide some examples here when we have a graph G we will

consider it as a ordered pair of the set of vertices and set of edges we can be even more specific

and write V G and E G V G is a set of vertices of the graph G and E G is a set of edges of the graph

G graph G is over here.

Now the ∪of two graphs G 1 and G 2 is G 3 where V of G3 that is set of vertices of G 3 is equal to

VG 1 ∪V G 2 and G of G 3 is EG 1 ∪EG 2 this is straight forward the ∩ is also straight forward the

∩ of two graphs G 1 and G 2 is G 3 where V of D 3 is V G 1 ∩ V G 2 and E of G 3 is EG1 ∩ EG 2, now

we move on to another operation which is slightly more complicated than these ones that is the

ring some the ring some of two graphs G 1 and G 2 is denoted by G1 o  + G2 where V of G1 o + G2

is V of G  1 ∪V of G  2, so there is no change over here from  ∪but now the change comes he

belongs to e of G1 o + G2 if and only if it is either in EG1 or in EG2 but not in both. Now we come

to the composition.
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A graph G is said to be a graph G is said to have been decomposed into two sub-graphs G 1 and

G 2 if G 1 ∪G 2 = G & G 1 ∩ G 2 equal to a null graph. Now the question is what do we mean by

G 1 ∪G 2 G 1 ∪G 2 is the ∪of G 1 and G 2 that is what we denoted by G 3 in the definition, so V of

G 1 ∪G 2 is V of G 1 ∪V of G 2 and E of G 1 ∪G 2 = E of G 1 ∪G of G 2 similarly G 1 ∩ G 2 is the

∩ of G 1 and G 2 so V of G 1 ∩ G 2 is V of G 1 ∩ V of G 2 and e of G 1 ∩ G 2 is e of G 1 ∩ G of G

2.

So when I say that G 1 ∪G 2 is G that means that the ∪of the set of vertices of G 1 and G 2 is

going to give me the set of vertices of G and that ∪of edges is going to give me the set of edges

in G and when I say that ∩ is a null graph that means that there is no common edge between G 1

and G 2. Now we come to deletion if VI is a vortex in a graph G then G  - VI denotes a sub-graph

of g obtained by deleting VI and all the edges incident on VI if VI is an edge then G  - EI is

obtained by deleting EI from EG.
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Now let us look at an example that suppose we consider a graph like this and suppose this is V I

this is V J and this is let us say AJ now if I delete VI then the graph G  - VI will be like this like

this whereas if I delete EJ the graph will be like this and lastly I have another idea or another

notion that is fusion a fusion means that you can fuse two vertices and make it a one vertex and

then all the edges which are incident on both these two vertices will be combined as incident

edges on the new vertex.
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So fusion a pair of vertices A, B in a graph are said to be fused if two vertices are replaced by a

single vertex,  so that every edge incident on A B are made to be incident on the new fused

vertex. Now let us see how fusion works we consider the previous graph like these this is V I and

VJ and then goes like this and suppose we want to fuse VI and VJ, so we shall make it a single

vertex it will move like this and see that these two edges are now incident on this vertex and

these two edges are now incident on these vertex so this is the fused vertex which can be read

which might be denoted by VI VJ, this brings us to the end of today's lecture thank you.  
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