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In today lecture we will study the principles of mathematical induction. 

(Refer Slide Time: 00:51)

Now the principle of mathematical induction provides us a very powerful technique to prove

several  mathematical  results.  The  basic  idea  is  that  suppose  we  have  a  statement  or  more

precisely a predicate which depends on positive integer value n and we expect it to be true or

false for all n greater than or equal to certain fixed positive integer. 



Then what we can do is to prove this statement for n equal to that fixed integer and assume that

the statement is true for some positive integer k which is greater than or equal to that fixed

integer and assuming that it is true for k proves that the statement is true for k+1. Now let me

write formally. Let P(n) D a statement which for all positive integer n may be either true or false.

To prove that P(n) is true for all integers n greater than or equal to 1, it is sufficient to prove 1

P(1) is true to for all k greater than or equal to 1 P(k)→P(k+1). Now thus we see that if we start

from 1 and suppose P(1) is true and suppose for all k greater than or equal to 1 P(k)→P(k+1),

this means that if P(k) is true, then P(k+1) is true. Now if we can prove these two facts, then

since P(1) is true and P(k)→P(k+1) therefore P(2) is also true. Since, P(1) is true P(3) is also

true. 

So we will start a chain like this that P(1) is true implying P(2) is true which in turn implies P(3)

is true and so on. And this is all for the two facts that we have already proved that P(1) is true

and for k greater than or equal to 1 P(k)→P(k+1). Now what we observe over here is that this

number one is very specific and we can relax the situation a little more. So it may so happen that

some statements may not be true for 1, 2, 3 after you have fixed positive integer.

But after that the statement may be true for all the other integers greater than that specific integer.

In order to bring this slight generalization into our framework, we state this whole principle in a

slightly different way. We state that to prove P (n) is true for all integers n ≥ n0 where n0 is a

fixed positive integer determined previously it is a to prove that 1) P (n0) is true to for all k ≥ n0

P(k) → P(k+1) so this is our slide generalization of the principle of mathematical induction that

we stated in the beginning of the lecture now we want the requires steps in a proof which uses

the principle of mathematical induction.
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A proof by using the principle of mathematical induction has the following steps 1) the 1st step is

called the basics of induction in the basics of induction we have to show that P (n0) is true if we

are unable to show this then it cannot start induction because it will be meaningless 2) induction

hypothesis that induction hypotheses is a hypotheses that P (k) that statement that we get by

putting the value of n = ka is true.

So we assume that P(k) is true 3) inductive step show that P(k+1) is true on the basics of the

induction hypotheses if we can successfully complete these 3 steps then we will have a proof by

using mathematical induction now let us look at one example now we are considering the sum of

first n positive integers let us write S(n) = 1 +2+ 3+ and so on up to n now suppose we have a

conjunction that S(n) is = n (n+1) / 2.

And suppose you want to prove this first of all let us see that for small values of n this formula

works so for example if I put n = 1 then S1 = 1 which is equal to 1 into 1 + 1 /2 n = 2 S2 = 1+ 2

which is = 3 and if you look at the formula it should be 2 2+1 /2 this is also = 3 therefore we see

that at least for n = 1 and 2, Sn = n+n/2 sorry n+n+1/2 works so if we can form the basics of

induction 1 basics of induction for n =1.

1= S1 = 1 into 1 + 1 / 2 which is equal to 1 so S1 = 1 1+/2 is true or in other words Sn = 1 n into

n + 1 / 2 is true for n = 1 now we move on to the induction hypothesis right the induction

hypothesis we have to choose or we will be say that suppose for k > = 1 sk = sk into k + 1 /2 is

true this is my inductive hypothesis, now we come to the third point which is the inductive step



what we do here we will start of case a +1 and write Sk + 1 as it is defined this is 1 + 2 +3 + n so

on + k + 1 now here we observed that we can always some this first k entries by using that

formula that we have already assumed therefore I can write this is equal 1 + 2 + 3  and so on up

to k + k + 1.

This is equal to K into K + 1 /2 + K + 1 and that we will sum this expression to get 2 k into k + 1

+2 times k +1 = 2 in the denominator and the numerator K + 1 into k + 2 the numerator can be

written as 2 k + 1 and then k + 1 + 1 thus we see that the formula that we wrote over here holds

for K + 1 if you assume that it holds for K, so this means very strictly speaking Sk = k into k +

1 / 2 implies Sk + 1 = k + 1 into k +1 /2 thus this formula is said equal to n into n + 1 /2 true is

going to be true for all positive integers > = 1 which is because you know that it is 2 for 1 and we

know that it is 2 for k.

Which is going to be k for k + 1 it is going to be true for true since it is T for true then it  will be

going through for 3 and so on as possible integers, now we just look at another example where

problem is solve is by using mathematical index.
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The problem is as follows find and true a formula for the sum of the first n cubes that is 13 +23

+33 and so on up to n3 well this is of course say difficult problem in the sense that nobody has

given  a  formula  this  is  the  formula  is  given  I  can  quickly  check  what  I  can  do  by  using

mathematical induction for that formula we need some imagination and something which cannot

be really quantify, let is check by experiment what happens and so 13  = 12 13 + 23   = 9 which is

equal to 32.

13 + 23 + 33 = 46 which is equal to 62 13 + 23 + 33 + 43 =100 which is equal to 102 now if you go

on in this way we will find that whenever we are taking sum of cubes of n which is becoming a

part if square we can check few more task then somehow we can argue of course without any

possible complex cube that probably whatever the sum may be it is part of square but square of

what that we do not know again if we just sum up to n terms we will see that 1 = 1 1 + 2 = 3 1 +2

+3 = 6 1 + 2 + 3+ 4 = 10 surprisingly.

We see that this sum of cubes is looks like as it square of the sum of that usual sum, now of

course this is not a prove but this may lead us to a connector like this well this is just a conjecture

now what  we can see that  it  is  a  very neat  conjecture  and it  is  what  is  checking by using

mathematical induction whether this is indeed true for that we will start again from basis of

induction,  here we see that 13 is indeed 1 1 + 1 / 2  2 = 1 thus we have prove the basis of

induction and now we come to induction hypothesis. Now induction hypothesis we assume that

sk = k x k + 1 / 2 2 yeah that is it for the k ≥1 3.



Now we have inductive step they can like before we consider k + 1 so if I have sk + 1 and write

explicitly the sum I will get 13 + 23 + 33+ and so on up tok3 + k + 13 again I absorb that the first k

terms  are  essentially  sk  and  therefore  since  have  assume  sk  =  k  +  1  k  x  kl  

+ 1/ 2 2 I can write this  as k2 k + n1 2 / 22 + k + 1 3 and of course I can simplify this expression as

putting denominate 22 in the denominator and on the numerator we have k2 k + 12 + 22 k +1 3 this

gives us 22 and here we will have k + 1 2 k2 + 4 k + 4.

Now this gives me 22 k + 12 and this is k + 2 2 + by doing again a small manipulation we get a k +

1 and k + 1 within bracket +1 2, so the expression k + 12 x k + 22 / 22 = k + 1 x k + 1 within

bracket + 1 / 2 and the whole expression is squared and we see that is conference exactly with

the formula that I predicted that is sn = n + 1 n x n + 1 / 2 2 therefore we can conclude that the

conjecture is true.

Now we move on to one more application of mathematical induction and of course there are

several applications of mathematical induction and here will use this mathematical induction to

prove something related to logic specifically de Morgan’s laws that we have studied in previous

lectures. Let us go to the example.
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Prove that if n ≥ 2 then the generalized de Morgan’s law that is 0(p1) and p2 and so on and pn by

conditional 0(p1) or 0(p2) or 0(pn) is true, have we gone to the solution. Now here we see that it

is somewhat meaningless to start from n = 1 it is from n = 2 because the de Morgan’s law the one

that we have already studied involves two prepositions.

So for n=2 we have nor r p1 and p2 by conditional not of p1 or not of p2 is 2 in fact we can use

our  previous  knowledge  to  write  that  these  two  statements  not  intersection  p2  and  not

intersection with n here and not of p1 and p2 because the bi conditional is tautology can be

prepositions therefore we can write that p1n p2 not of that is equivalent to not of p1 or p2 so this

essentially calls induction hypothesis I am sorry this essentially falls the bases of induction.

So I write the statement as this I have got a statement pn  which is not of p1 p2 and pn equivalent

to not of p1 or not of p2 or not of pn first step bases of induction 2 is true which essentially de

Morgan’s law now the second step  is induction hypothesis states that pa is true which means that

not of e1 and so on to pk is equivalent to not of p1 and so on up to not of pk now equal to

induction step now we start with pk+1 which is not of p1 and n up to pk and then n pk+1.

And now we see that this is equivalent to not of p1 and pk we can put a bracket and enclosing pk

up to pk that is because after all we know that then we put pk+1 and once we have this if we see

that we have one preposition p1 and up to pk and then another voice and not of that and we can

use de Morgan’s law for the original de Morgan’s law the reason is that we have proved e2 is true

therefore we will write not of p1 and so on up to pk or not of pk+1



And now the induction hypothesis to write that not of p1 and up to pk is not of p1 or not of p2

and not of pk we can off course put and enclose this by bracket and then it is not of pk+1 and

now we know that we can remove brackets so we can write not of p1 or not of p2 or so on pk or

pk+1

Because we see that I have to write equivalent over here so we see that pk+1 is true so pk implies

pk+1 for k<2 thus we see that pn is true for all n is equal to 2 here we see that we have used is

slightly different technique in that we are not only depending on the truth of pk but we are

depending on truth of pk/2 in the basics of induction statement by this we end today lecture

thank you.   
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