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Multivariate Probability Density Function and Independence 

 

We will discuss multivariate probability density functions. After completing the discussion 

on multivariate distribution functions, we also covered multivariate probability mass 

functions and their properties, including how to determine these functions. Similarly, we 

will now learn how to define a joint probability density function for multivariate random 

variables. To recap, when we discussed bivariate random variables, specifically bivariate 

continuous random variables, we considered two random variables, X₁ and X₂. In that case, 

we defined the cumulative distribution function as the probability that X₁ ≤ x₁, and X₂ ≤ x₂. 

 

 

 

 

This is the cumulative distribution function for bivariate continuous random variables, and 

we assumed that it is differentiable with respect to both X₁ and X₂. Based on this 

assumption, there exists a function of X₁ and X₂ that represents the joint cumulative 



distribution function. This function, known as the joint probability density function, can 

also be obtained by taking the partial derivatives of the cumulative distribution function 

with respect to X₁ and X₂, provided that these derivatives exist for all values of X₁ and X₂. 

When extending this concept to multivariate random variables, we consider variables such 

as X₁, X₂, and so on, up to Xn. These are collectively represented as a random vector, often 

written as X, where each component, such as Xi, is a measurable function that maps the 

sample space to the real numbers. 

 

In this representation, X is a random vector that acts as a function mapping the sample 

space to an n-dimensional real number space. For example, the vector X can be thought of 

as containing the components X₁, X₂, and so on, up to Xn, as elements in this space. When 

all the individual random variables in this vector are continuous, the random vector is 

referred to as a multivariate continuous random variable. For these variables, we assume 

the existence of a joint density function. The distribution function for this random vector 

represents the probability that X₁ ≤ x₁, X₂ ≤ x₂, and so on, up to Xn ≤ xn. 

 

This is known as the multivariate cumulative distribution function. Similarly, when we 

extend the concept to multivariate random variables, considering up to n random variables 

such as X₁, X₂, and so on up to Xn, we assume that these variables are continuous random 

variables. For such cases, there exists a function, often referred to as the joint probability 

density function. This function, denoted as f, represents the joint density of the variables 

X₁, X₂, and Xn. The joint probability density function is defined over the range of all 

variables, from negative infinity to their respective values. 

 

For example, for variables X₁, X₂, and Xn, the joint density can be expressed as an integral 

over these variables, where intermediate variables u₁, u₂, and so on are used within the 

integration limits. This function is known as the joint probability density function, and it is 

denoted by f(X₁, X₂, ..., Xn). This function can also be obtained by taking the partial 

derivatives of the cumulative distribution function with respect to all variables X₁ through 

Xn, assuming these derivatives exist. Similar to the univariate and bivariate cases, the 

multivariate case also includes specific properties of the joint probability density function. 

These properties are important for understanding and working with multivariate continuous 

random variables. 



 

 

 

So, this property is written here, We now consider the representation of the multivariate 

probability density function. The joint probability density function for an n-variable 

random variable is defined as a function that can be used to compute probabilities over the 

range of all variables. The corresponding joint cumulative distribution function has already 

been discussed. Next, we will explore the properties of the joint probability density 

function, along with the concept of the marginal probability density function. 

 

 

 

Specifically, we will discuss how to derive the marginal probability density function from 

the joint probability density function. Many of the properties we will discuss are extensions 

of those seen in univariate and bivariate cases. One important property of the cumulative 



distribution function is that it is non-decreasing. To explain this, let’s assume we fix some 

of the variables while varying one of them. For instance, if we have variables X₁, X₂, ..., 

Xn, and we fix X₂ through Xn while increasing X₁, the cumulative distribution function 

will not decrease as X₁ increases. 

 

This property holds because, in the multivariate case, while we cannot fully order all 

variables in n-dimensional space, we can establish an order by fixing certain coordinates. 

As a result, the cumulative distribution function is non-decreasing in each coordinate. 

Furthermore, the partial derivatives of the cumulative distribution function with respect to 

any variable will always be greater than or equal to zero. This means that the partial 

derivative of the cumulative distribution function with respect to X₁, X₂, ..., Xn corresponds 

to the joint probability density function, and it is non-negative for all values of the 

variables. 

 

Another key property, similar to the bivariate case, is that the integral of the joint 

probability density function over the entire space equals one. 

This reflects the fact that the total probability across all possible outcomes is one. For 

example, consider two points, A and B, in n-dimensional space, where A has coordinates 

(a₁, a₂, ..., an) and B has coordinates (b₁, b₂, ..., bn). If each aᵢ ≤ bᵢ for all i from 1 to n, the 

probability that X₁ falls between a₁ and b₁, X₂ falls between a₂ and b₂, and so on, up to Xn 

falling between an and bn, can be found by integrating the joint probability density function 

over these ranges. This integration would be performed from a₁ to b₁ for X₁, a₂ to b₂ for X₂, 

and so on, up to an to bn for Xn. This process essentially calculates the probability within 

an n-dimensional region, which, in higher dimensions, is analogous to a cube. 

 

For instance, in the two-dimensional case, the region would be a rectangle defined by the 

intervals [a₁, b₁] and [a₂, b₂]. In three dimensions, it would be a cube, and in n dimensions, 

it becomes a hypercube. These are some of the fundamental properties of the joint 

probability density function. Additionally, many other properties follow as natural 

extensions of the univariate and bivariate cases. These are some of the fundamental 

properties of the joint probability density function. Additionally, many other properties 

follow as natural extensions of the univariate and bivariate cases. Next, we will discuss 

how to find the marginal probability density function if the joint probability density 

function is known. 



 

 

 

Suppose we have the joint probability density function for a multivariate random variable 

represented by the vector X = (X₁, X₂, ..., Xn). This function provides the joint probabilities 

for all values of X₁, X₂, ..., Xn in n-dimensional space, Rⁿ. Now, if we want to determine 

the probability density function for one of the variables or any subset of the variables, we 

calculate the marginal probability density function. For a set of n random variables, there 

are 2ⁿ - 1 possible non-empty subsets. For instance, the subsets might include individual 

variables like X₁ or X₂, pairs like (X₁, X₂), or larger subsets. 

 

The process of finding the probability density function for any subset of variables is 

referred to as finding the marginal density. To illustrate, let’s consider finding the marginal 

probability density function of X₁. From our knowledge of bivariate cases, this is done by 

integrating out the other variables. Specifically, we integrate the joint probability density 

function over all variables except X₁. Mathematically, this involves integrating the joint 

density over X₂, X₃, ..., Xn across their entire range, from negative infinity to positive 

infinity. 

 

For example, the marginal density function of X₁ is calculated as: ∫...∫ f(X₁, X₂, ..., Xn) dX₂ 

dX₃ ... dXn. 

 

Integrate the joint density over X₂, X₃, ..., Xn, while keeping X₁ fixed. The resulting 

function depends only on X₁, as the other variables have been integrated out. Similarly, if 



we want to find the marginal probability density function for a subset like (X₁, X₂), we 

integrate the joint density over the remaining variables, such as X₃, X₄, ..., Xn. In this case: 

∫...∫ f(X₁, X₂, ..., Xn) dX₃ dX₄ ... dXn. 

 

X₁ and X₂ are kept fixed, while the integration is performed over X₃ through Xn. The result 

is a function of X₁ and X₂, representing their marginal density. 

This process can be generalized for any subset of the random variables. For example, if we 

want to find the marginal density function for variables X₂ and X₃, we integrate the joint 

density over all other variables, such as X₁, X₄, ..., Xn. The integration effectively removes 

the influence of the unwanted variables, leaving the marginal density function for the 

variables of interest. 

 

In summary, to find the marginal probability density function for any subset of variables: 

1. Identify the variables of interest that you wish to keep. 

2. Integrate the joint probability density function over all other variables that are not 

part of the subset. 

3.  

The result is the marginal density function for the selected subset. This method 

provides a systematic way to extract the probability density for any subset of 

variables from the joint density. Hopefully, this explanation clarifies the concept of 

finding marginal probability density functions when the joint probability density 

function is known. The discussion here explains how to find the marginal 

probability density function from the joint probability density function. In the 

example, the variables Y₁, Y₂, ..., Yn₋₁ are retained, while Yn is eliminated. 

 



 

 

To achieve this, the joint probability density function is integrated with respect to Yn. 

Similarly, if we wish to keep only Y₁ and eliminate all other variables, we integrate the 

joint probability density function with respect to Y₂, Y₃, ..., Yn. This gives the marginal 

probability density function for Y₁. This process shows how the marginal probability 

density function can be obtained by integrating the joint probability density function over 

the unwanted variables. Now, we will discuss how to determine whether a multivariate 

random variable consists of independent random variables. 

 

 

 

This is an important concept, especially for topics like statistical inference, where we 

frequently deal with independent and identically distributed random variables in the 

context of random samples. Let Y₁, Y₂, ..., Yₙ be random variables. We denote this as a 



vector Y = (Y₁, Y₂, ..., Yₙ). Suppose these are discrete random variables with a joint 

probability mass function (PMF) represented as P(Y = y). Explicitly, this is P(Y₁ = y₁, Y₂ 

= y₂, ..., Yₙ = yₙ), which gives the probability that Y₁ takes the value y₁, Y₂ takes the value 

y₂, and so on up to Yₙ taking the value yₙ. The marginal probability mass function of Yᵢ is 

denoted as P(Yᵢ = yᵢ), which is the probability that the random variable Yᵢ takes the value 

yᵢ for each i from 1 to n. 

Random variables Y₁, Y₂, ..., Yₙ are said to be independent if their joint probability mass 

function can be expressed as the product of their marginal probability mass functions. 

Specifically, P(Y₁ = y₁, Y₂ = y₂, ..., Yₙ = yₙ) = P(Y₁ = y₁) × P(Y₂ = y₂) × ... × P(Yₙ = yₙ). 

This must hold true for all values of y₁, y₂, ..., yₙ that belong to their respective domains 

(usually the set of real numbers). In a simplified notation, the independence condition can 

be written as: P(Y = y) = ∏ P(Yᵢ = yᵢ), where the product is taken over i from 1 to n, and y 

represents the vector (y₁, y₂, ..., yₙ). In summary, Y₁, Y₂, ..., Yₙ are independent random 

variables if their joint probability mass function equals the product of their marginal 

probability mass functions for all values in their domain. 

 

 

 

Now, let's consider an example to find the joint probability mass function. If the random 

variables are not independent, we may not know the joint probability mass function unless 

it is provided. Suppose we have a Poisson random variable. Let Yᵢ be a Poisson random 

variable with parameter λᵢ, for i = 1 to n. Note that λᵢ are different, so these random variables 

are not identically distributed, as identically distributed random variables would have the 

same distribution. 



For example, if all Yᵢ's had the same Poisson distribution with parameter λ, then they would 

be identically distributed. But here, we have different λᵢ values. If Yᵢ is a Poisson random 

variable with parameter λᵢ, its probability mass function (PMF) is given by: P(Yᵢ = yᵢ) = 

(e^(-λᵢ) * λᵢ^yᵢ) / (yᵢ!). This is valid for integer values of yᵢ (i.e., yᵢ = 0, 1, 2, 3, ...). Now, if 

Y₁, Y₂, ..., Yₙ are independent random variables, we can find their joint probability mass 

function. 

Since they are independent, the joint PMF of Y₁, Y₂, ..., Yₙ is the product of their individual 

PMFs: P(Y₁ = y₁, Y₂ = y₂, ..., Yₙ = yₙ) = P(Y₁ = y₁) * P(Y₂ = y₂) * ... * P(Yₙ = yₙ). By 

applying the Poisson PMF for each Yᵢ, the joint probability mass function becomes: P(Y₁ 

= y₁, Y₂ = y₂, ..., Yₙ = yₙ) = (e^(-λ₁) * λ₁^y₁ / y₁!) * (e^(-λ₂) * λ₂^y₂ / y₂!) * ... * (e^(-λₙ) * 

λₙ^yₙ / yₙ!). This simplifies to: 

P(Y₁ = y₁, Y₂ = y₂, ..., Yₙ = yₙ) = e^(-Σλᵢ) * Π(λᵢ^yᵢ / yᵢ!). This is the joint probability mass 

function for independent Poisson random variables. If Yᵢ takes integer values, the 

probability mass function is nonzero for integer values of y₁, y₂, ..., yₙ, and zero otherwise. 

Thus, the joint probability mass function can be written as: P(Y₁ = y₁, Y₂ = y₂, ..., Yₙ = yₙ) 

= e^(-Σλᵢ) * Π(λᵢ^yᵢ / yᵢ!) for yᵢ ∈ {0, 1, 2, ...}. 

 

 

 

So, Pᵧ(y) is equal to e^(-Σλᵢ) * Π(λᵢ^yᵢ / yᵢ!), where yᵢ ∈ {0, 1, 2, ...} for i = 1, 2, ..., n. This 

is valid for integer values of yᵢ. Otherwise, it is 0. This represents the joint probability mass 

function of independent Poisson random variables. To summarize, when we know the 

random variables are independent, we can find their joint probability mass function if we 

know their marginal probability mass functions. This joint probability mass function is 



applicable to independent Poisson random variables. Next, we will discuss the case when 

the random variables are continuous. In this case, we define independence with respect to 

their probability density functions. 

 


