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Now, you can also prove it graphically. Suppose this is x₁ and this is x₂. These points may 

not all be positive; we are just representing two points. Now, it is asking that only y is 

considered, not two values. So, let us consider just one value for y. 

Now, what is X ≤ x? Sorry, okay, there are two points: y₁ and y₂. We are proving, I actually 

thought the last result we already proved. So, there are two points, y₁ and y₂, and one value 

of x. Now, it is asking for the probability that X ≤ x. 

X ≤ x. That means this area, the probability of this part, and y will be between y₂ and y₁. 

So, this is y₂ and this is y₁. Now, this value is nothing but (x, y₂), and this is (x, y₁), this 

point. Now, this probability is the probability of this region, so X ≤ x, and Y ∈ [y₁, y₂]. 

Y ≤ y₂ in this region. So, how will we get this region? This is represented by Fₓᵧ(x, y₂). This 

is nothing but the probability that X ≤ x, and Y ≤ y₂. So, X ≤ x is this part. 

Suppose I’m writing this part: X ≤ x, and Y ≤ y₂, so it’s the whole part. Now, this is the 

probability of (x, y₂), or Fₓᵧ(x, y₂). Now, what is Fₓᵧ(x, y₁)? This is nothing but the 

probability that X ≤ x, and Y ≤ y₁. So, X ≤ x is this part, and Y ≤ y₁ is this part. 

So, this is what I am writing, this minus... Now, this is plus, actually all plus. So, basically, 

if you subtract that part from the whole region, then we are getting this part. That is the 

probability that X ≤ x, and Y ∈ [y₁, y₂]. We have proved this by set theory, and we have 

also presented it graphically. 

 



 

 

So, this is one of the important properties of the cumulative distribution function. This is 

very similar to when we discussed the univariate random variable. There are only two 

points, and the probability that X is between x₂ and x₁ is nothing but Fₓ(x₂) - Fₓ(x₁). 

However, here, we are fixing one coordinate and taking the other coordinate in an interval, 

and then we are finding the relationship. Until now, it has just been an extension. 

The additional property is property 7, which is very important. Any function that satisfies 

all the properties but does not satisfy this property 7 cannot be considered a cumulative 

distribution function or a joint cumulative distribution function of a bivariate random 

variable. So, what is this property? It applies when you consider two points. Here, let us 

consider two points, x₁ and x₂, which belong to ℝ, such that x₁ < x₂, and two other points, 

y₁ and y₂, which also belong to ℝ, such that y₁ < y₂. 

Then, what is the probability that X ≤ x₂, X > x₁, and Y ≤ y₂, Y > y₁? What will this 

probability be? So, this probability can be represented as Fₓᵧ(x₂, y₂) - Fₓᵧ(x₁, y₂) - Fₓᵧ(x₂, y₁) 

+ Fₓᵧ(x₁, y₁). So, this is the probability. Now, how can we do this? 

Let us first represent it graphically, as it will be easier to understand. This is x₁, x₂, and this 

is y₁, y₂. So, we are talking about the following: This is Y = y₁, Y = y₂, and this is X = x₁, 

and this is X = x₂. So, this point is (x₂, y₂), this point is (x₂, y₁), this is (x₁, y₁), and this is 

(x₁, y₂). 

The probability that x₁ ≤ X, and y₁ ≤ Y ≤ y₂ will be the probability within this region, 

between x₁ and x₂, and y₁ and y₂. How do we find this region? First, consider Fₓᵧ(x₂, y₂). 

By definition, this represents the probability that X ≤ x₂, and Y ≤ y₂. So, the probability 

that X ≤ x₂ and Y ≤ y₂ represents the probability of the entire region. 



However, we don't want the probability of the entire region; we need to subtract some 

additional values. These values are represented by Fₓᵧ(x₁, y₂), which is the probability that 

X ≤ x₁ and Y ≤ y₂. So, X ≤ x₁ represents this region, and Y ≤ y₂ represents this region. We 

subtract this region because we did not ask to find the probability for it. Additionally, we 

need to subtract this region as well, which is why we subtract Fₓᵧ(x₂, y₁). 

This represents the probability that X ≤ x₂ and Y ≤ y₁. So, X ≤ x₂ means this part. X ≤ x₂ 

represents this, and Y ≤ y₁ means it is subtracting this part as well. Now, when subtracting 

this and this part, we have subtracted this part twice. This part is nothing but Fₓᵧ(x₁, y₁), 

which represents the probability that X ≤ x₁ and Y ≤ y₁. 

That is why we subtracted this part twice. Therefore, we are adding this term, which is why 

it is Fₓᵧ(x₁, y₁). So, this part minus this part, and then again this minus this part, plus this 

part, because we have subtracted it twice. Using set theory, we can also prove this. You 

can find the set and represent it accordingly. 

Then, suppose you first determine the set by considering and fixing y₁ and y₂. After that, 

you can apply the previous proof twice. By doing so, you can verify and prove it. Now, the 

important part is what we want to say. So, what we have found in this property is property 

7. Property 7 states that the expression Fₓᵧ(x₂, y₂) - Fₓᵧ(x₂, y₁) - Fₓᵧ(x₁, y₂) + Fₓᵧ(x₁, y₁) 

represents the probability that X ∈ [x₁, x₂], and Y ∈ [y₁, y₂]. 

 

 

 

Property 7 states that the given relationship must hold. As per Axiom 1, the probability 

should always be ≥ 0. Therefore, any cumulative distribution function or bivariate function 



that satisfies properties up to 6 might still fail if it does not satisfy the relationship described 

in Property 7. So, we have to check that if you are considering a bivariate function from ℝ² 

to ℝ, and you are thinking it may be a cumulative distribution function of a bivariate 

random variable, it may not actually be one. Even if it satisfies the first six properties, it 

cannot be called a joint cumulative distribution function of a bivariate random variable 

unless it satisfies this relationship as well. 

So, we will discuss some examples where we encounter cases that appear to be cumulative 

distribution functions but cannot be considered as such because they do not satisfy these 

properties. Now, we have already talked about this property, which is called independence. 

So, what is independence by definition? So, whenever we talk about any event, suppose A 

and B are two events. Let A and B be two events. 

 

 

 

We say that events A and B are independent if P(A ∩ B) = P(A) * P(B). Now, how do we 

define two random variables as independent? We have already discussed this, but let us go 

over it again. Now, how we define two random variables as independent? We already 

discussed this. Again, we are discussing. 

 

It is because independence for two events is fine. But random variables are functions, 

measurable functions. We know the joint cumulative distribution function of two random 

variables. Let X and Y be two random variables with the joint cumulative distribution 

function Fxy(x, y). This is defined as P(X ≤ x and Y ≤ y). 

Now, this event X ≤ x and Y ≤ y is nothing but the event Y ≤ y, X ≤ x as an intersection. 



So, in our notation, this is nothing but P(Ax ∩ By). Where Ax is the event defined for any 

real number x as the set of all s ∈ S such that X(s) ≤ x. This is a subset of S. Similarly, By 

is the event defined as the set of all s ∈ S such that Y(s) ≤ y. 

 

 

Now, Ax ∩ By refers to the event where we will say that the events Ax and By are 

independent if P(Ax ∩ By) = P(Ax) * P(By). In that case, Ax and By are independent 

events. Now, Ax ∩ By refers to the event where we will say that the events Ax and By are 

independent if P(Ax ∩ By) = P(Ax) * P(By). In that case, Ax and By are independent 

events. That means, what is Ax ∩ By? 

 

Sorry, this is By. Ax ∩ By is nothing but P(Fxy). So, Ax ∩ By is equivalent to X ≤ x and 

Y ≤ y. So, this implies that this is nothing but P(X ≤ x), and this is nothing but P(Y ≤ y) for 

all x, y ∈ R, if this happens. So, this implies that we can write this as equivalent to saying 

that Fxy(x, y) = Fx(x) * Fy(y) for all x, y ∈ R. 

 

If it satisfies this relationship, Fxy(x, y) = Fx(x) * Fy(y) for all x, y ∈ ℝ, then we say that 

X and Y are independent random variables. Whenever you can express the joint cumulative 

distribution function as the product of their marginal cumulative distribution functions, 

then X and Y are said to be independent random variables. This is the definition. Let us 

discuss some examples. Before that, we need to cover a few concepts because we will be 

doing some other computations as well. 

 

So, how can we find these marginals? We are talking about the marginal distribution 

function, Fx(x). Suppose the joint distribution functions are given. Let Fxy(x, y) be P(X ≤ 



x and Y ≤ y). This is known. Now, we want to find the marginal cumulative distribution 

function of X and Y. 

 

So, that means we want to find Fx(x), which is P(X ≤ x) for all x ∈ ℝ. We also want to find 

Fy(y), which is P(Y ≤ y) for all y ∈ ℝ. So, suppose the joint cumulative distribution function 

is known. Now, we want to find how we can compute it. To do this, let's consider the limit 

as x → ∞ of Fxy(x, y). 

 

What does this represent? This is P(X ≤ x and Y ≤ y) as x → ∞. Now, by definition, this 

represents P(X ≤ x and Y ≤ y) for this event. Now, whenever x → ∞, as we discussed 

earlier, notice that y is fixed here. We are only considering x approaching infinity. 

As x becomes larger and larger, this event is simply P(X ≤ x). This is nothing but all s ∈ S 

where X(s) ≤ x. As x becomes larger and larger, all s will satisfy this relationship. So, when 

you take the limit as x → ∞, this set will become S. This is just for intuition and to help 

understand the concept. 

 

So, we understand that whenever x → ∞, this event actually becomes S. So, this is equal 

to P(S ∩ Y ≤ y). This is nothing but P(Y ≤ y). So, S ∩ Y ≤ y is nothing but this, and this is 

equal to Fy(y). So, what is this? 

 

So, this is Fy(y). So, by definition, Fy(y) is the marginal cumulative distribution function 

of Y. Hence, what we found is this result: whenever you take the limit of one variable, you 

get this. Similarly, you can show the limit for the other variable. 

 So, what we found is that as x → ∞, Fxy(x, y) = Fy(y), which we found earlier. Similarly, 

if you take the limit as y → ∞, fixing the variable x, and let the other variable tend to 

infinity, you will get the marginal cumulative distribution function of the variable X. 

 



So, that is the method of finding the marginal cumulative distribution function when the 

joint cumulative distribution function is known to us. So, this is the result. When you take 

y → ∞, it becomes nothing but X ≤ x, since the condition is always satisfied. Similarly, 

when y → ∞, Fxy(x, y) becomes Fx(x). If you take x → ∞, you will get Fy(y). 

 

This is the concept of how to find the marginal distribution function. Let us now discuss 

some examples. So, consider a function F(x, y), which is equal to 1 - e^(x + y) * e^(xy), 

whenever x ≥ 0 and x < ∞, and y ≥ 0 and y < ∞, and 0 otherwise. Can this function be the 

joint cumulative distribution function (CDF) of a bivariate random variable? So, the 

question is whether this function can be the joint cumulative distribution function of a 

bivariate random variable. 

 

Let's discuss this example. The function is given, but we don't know if it will be a 

cumulative distribution function. Let F be defined as F(x, y), which is equal to 1 - e^(x + 

y), whenever x ≥ 0 and x < ∞, and y ≥ 0 and y < ∞. It is 0 otherwise. So, this is the example. 

F(x, y) = 1 - e^(- (x + y)), where x ≥ 0, y ≥ 0, and 0 otherwise. So, the question is whether 



this can be a joint cumulative distribution function of a bivariate random variable. To check 

this, we need to look at the properties. So, what are the properties? You can see that. 

So, it is always between 0 and 1. You have to check all those properties. Let’s look at this. 

When x ∈ (0, ∞), and y ∈ (0, ∞), this is equal to e^(- (x + y)). Since e^(- (x + y)) is always 

less than or equal to 1, this will always be between 0 and 1. So, as x → ∞ and y → ∞, e^(- 

(x + y)) approaches 0. Therefore, F(x, y) approaches 0. Similarly, when x → -∞, this 

becomes 0 by definition. You can observe that properties 1 to 6 are satisfied. The only issue 

lies with the 7th property. So, you can remember the first six properties, as these are the 

key properties to check. It is right-continuous, and those properties will also be satisfied. 

The only property we need to check is the 7th, as we discussed earlier, because the 7th 

property is very important. The 7th property states that if you consider two real numbers, 

x1 < x2, and two real numbers, y1 < y2, So, to find the probability, we need to determine 

the probability of X ≤ x2, X > x1, and Y ≤ y2, Y > y1. This probability is simply given by 

Fxy, which we can write as Fxy(x2, y2). If it is a cumulative distribution function, then we 

can say that this property holds: the probability for the region with coordinates (x2, y2) 

minus the probability for the region with coordinates (x2, y1), minus the probability for the 

region with coordinates (x1, y2), plus the probability for the region with coordinates (x1, 

y1). So, we can write that this is always ≥ 0. 

We need to check that for any values of x1, x2, y1, y2, this function satisfies this 

relationship, meaning it must always be ≥ 0. You can check this with any numbers, or 

generally, you can verify this relationship to determine whether it is ≥ 0. If it cannot be 

proven that it is always ≥ 0, then we need to find an example where it is not true, because 

it should hold for any x1 and x2. Let's consider any values for x1 and x2. Suppose y1 = 1. 

Let x1 = 1 and x2 = 2. We can also take y1 = 1 and y2 = 2. This is just an example we can 

use. 

So, we need to prove that for this case, F(x2, y2) = F(2, 2) - F(2, 1) - F(1, 2) + F(1, 1). 

Now, what will the values be? So, F(2, 2) = 1 - e^(- (2 + 2)), which simplifies to 1 - e^(- 

4). F(2, 1) = 1 - e^(- (2 + 1)) = 1 - e^(- 3). F(1, 2) = 1 - e^(- (1 + 2)) = 1 - e^(- 3). F(1, 1) = 

1 - e^(- (1 + 1)) = 1 - e^(- 2). 

Now, substituting these values, we get: F(2, 2) - F(2, 1) - F(1, 2) + F(1, 1) = (1 - e^(- 4)) - 

(1 - e^(- 3)) - (1 - e^(- 3)) + (1 - e^(- 2)) = - e^(- 4) - 2e^(- 3) + e^(- 2). This can be 

represented as e^(- 2) * e^(- 2) - 2e^(- 2) * e^(- 1) + e^(- 1) * e^(- 1). This is nothing but 

the negative of e^(- 2) * e^(- 1) squared. So, notice that this is non-zero. Not only that, but 



it is the square of any real number, whether positive or negative, and a square is always 

positive. Therefore, this is a positive number, and when we take the negative of this positive 

number, it will always be less than 0. 

For this, x1 = 1, and x2 can be any other value. I just used some values to illustrate the 

point. When we check, we find that this is < 0. It may also be true for other values of (x1, 

x2) and (y1, y2), which can be shown through similar algebra. This means that property 7 

is not satisfied. Since it is less than 0, the probability would be less than 0, which is not 

possible. Probability must always be between 0 and 1. Therefore, it must be between 0 and 

1. That is why it will not be a cumulative distribution function of a bivariate random 

variable. So, that is one example we discussed. 

 

 

 

Let us discuss another. I hope you are following and you understood it. The question was 

whether this function can be a joint cumulative distribution function (CDF) of a bivariate 

random variable. What we found is that it cannot be, because property 7 is not satisfied. 

 


