Predictive Analytics - Regression and Classification Prof. Sourish Das Department of Mathematics Chennai Mathematical Institute

Lecture - 61 Hands on with Julia_Bayesian Poisson Regression with Horse Shoe English Prior_League Data

Hi all, in this video, I am going to do Poisson regression or count regression using Julia. And in this video, I am going to show how we can use the UK football data or English prior league data, because we have seen in the previous videos that English prior league data, the home teams code the number of goal. And if we want to model number of goal, it will be either through a Poisson regression or negative binomial regression.

So, what I am going to do in this video, I am going to show you how to do Poisson regression using Julia, ok.

(Refer Slide Time: 01:06)

ookman	ks 🖸	00	🕄 Don	M Chance	ins 🗎 CC	INA 🗎	icurish's BookM	ark 🔇 Financ	e Resear	rch	M Gmail	💡 Maç	8	News	Translate								
	File	Edit	View	Insert	Cell	Kernel	Widgets	Help										Trus	ted	/ 3	ulia 1.8.2	2 0	
	8	+ 30 0	8 6	↑ ↓	► Run	∎ C	₩ Code	× E	Ш														
					Transfer of																		
			Poi	sson	Regres	sion	using Ju	lia															
		In [1]:	usin	g CSV,	DataFram	es, CRR	10																
		Tn (61-	df +	rain =	DataFram	OICSV F	10/ 20 20	21.092"11															
		Out[6]:	380	106 Data	Frame	eleaver.	rref 20_20	_21.007 []									6 colur		1 355	mus	nmitted		
			Row	Div	Date	Time	HomeTeam	AwayTeam	FTHG	FTAG	FTR	HTHG	HTAG	HTR	Referee	HS	AS	HST	AST	HF	AF		
				String3	String15	Time	String31	String31	Int64	Int64	String1	Int64	lint64	String1	String15	Int64	Int64	int64	Int64	Int64	Int64		
			1	EO	12/09/2020	12:30:00	Fulham	Arsenal	0	3	Ä	0	1	A	C	5	13	2	6	12	12		
							Crystal								Kavanagi								
			2	EO	12/09/2020	15:00:00	Palace	Southampton	1	0	н	1	0	н	J Moss	5	а	3	0	14	11		
			3	ED	12/09/2020	17:30:00	Liverpool	Leeds	4	3	н	3	2	н	M Oliver	22	6	6	3	9	6		
			4	EO	12/09/2020	20:00:00	West Ham	Newcastle	0	2	A .	0	0	D	S Attwell	15	15	3	2	13	7		
			5	EU	13/09/2020	14:00:00	west brom	Leicester	0	3	^	U	U	U	A saylor	1	13	1		12	a		
			6	EO	13/09/2020	16:30:00	Tottenham	Everton	0	1	A	0	0	D	Atkinson	9	15	5	4	15	7		
			7	E0	14/09/2020	20:15:00	Brighton	Chelsea	1	3	A	0	1	A	C Pawson	13	10	3	5	8	13		10000
			8	EØ	14/09/2020	18:00:00	Sheffield	Wolves	0	2	A	0	2	A	M Dean	9	11	2	4	13	7		1 And
				EA	10/00/2020	12/20/00	United	Wast Deam		-	ц	2		u	MOree	17		7					00
				EV	19/09/2020	12.30.00	CVBIDDE	AMER' DIGILI	9	4	п	6		n	M Dibari	14	0			9			NO

So, first in my Jupyter, I am going to start our Jupyter Notebook. So, first I will write give a title to my Notebook, say Poisson Regression using Julia, ok. And then the first thing I am going to do, I am going to call CSV DataFrames and CRRao is 3 for sure. Let me run this.

(Refer Slide Time: 01:50)

localhost:8888/tree/Downloads/Teaching/Regression_and_Classification/NPTEL/Week-11	a 🖞 🕁 🗢 🐨 💷 🕈 🐨 🐨 🛣 😓 🖬 🌒 :
ss 🤨 🧿 🥹 🚱 Don M Chance Ins 🗎 CCNA 📄 Scurish's BookMark 😨 Finance Research M Gmail 🍳 Maps 👔	🗈 News 🔩 Translate
📁 jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Uplcad New • 2
0 • In / Downloads / Teaching / Regression_and_Classification / NPTEL / Week-11	Name 🕹 Last Modified File size
۵	seconds ago
Cecture_21_logistic_regression.ipynb	16 hours ago 3.74 MB
🗌 🖉 Untitled.jpynb	Running seconds ago 613 B
C E0_20_21.csv	28 minutes ago 176 kB

.

Now, in my the same folder where you are starting your Jupyter Notebook, I have downloaded 2021 data and 21 22 data. So, I am going to use 2021 data, ok.

(Refer Slide Time: 02:18)

So, what I will do DataFrame CSV dot File quote unquote, I just need the name. So, file name, you keep the file name in the same folder. So, that will be helpful, ok.

(Refer Slide Time: 02:36)

B • 0 0 0 0 0 1 1 1 0 MOlive 7 6 1 1 1 0 MOlive 7 6 1 1 1 1 1 1 1 0 MOlive 7 6 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	File Edit	view	insen	Cell	Kernei	widgets	нер										Inust	ed	# JI	Jia 1.8.	20	
11 10 1000000 Market 1	8 + % 3	6	^ 	► Run	C	H Code	V 🖾	- -				1.0		Ohm	7			2		12		
10 20 2000000000000000000000000000000000000		12	ED	20/09/2020	12:00:00	Southamoton	Tottacham	2	5		1	1.0		Conte	14	9	7	6	16	18		
596 ED 19155/2021 2015:00 Burrier Lewpool 0 3 A 0 1 A Country for bit of bit		10		10000000	12.00.00	Constantino	i		1				1			1		-	10	10		
370 ED 1965/021 2015/03 WeetHam 1 3 A 1 1 D Multiwe 44 21 4 8 8 11 371 ED 2305/021 105.00 More Max 2 0 H 0 D JMore 14 21 4 8 8 11 372 ED 2305/0221 160.00 Amor Max 2 1 H 1 0 H 54 6 8 1 1 1 1 H 1 0 H 50 5 1 10 8 373 ED 2305/021 160.00 Amor Max 2 1 H 2 0 H 2 0 H 2 0 H 1 D A 0 4 0 6 2 12 12 12 12 12 12 12 12 12 12 12 <td></td> <td>369</td> <td>E0</td> <td>19/05/2021</td> <td>20:15:00</td> <td>Burnley</td> <td>Liverpool</td> <td>0</td> <td>3</td> <td>A</td> <td>0</td> <td>1 A</td> <td>C K</td> <td>) (avananh</td> <td>10</td> <td>20</td> <td>4</td> <td>3</td> <td>10</td> <td>7</td> <td></td> <td></td>		369	E0	19/05/2021	20:15:00	Burnley	Liverpool	0	3	A	0	1 A	C K) (avananh	10	20	4	3	10	7		
371 ED 2045/2021 160.00 Awardi Begten 2 0 H 0 0 D JMose 16 5 5 1 10 8 372 ED 2045/2021 160.00 Awardi Chelsee 2 1 H 1 H SAture 6 23 3 7 11 12 373 ED 2045/2021 160.00 Full 3 1 H 2 0 H D 0 14 10 0 4 12 6 374 ED 2045/2021 160.00 Full 3 1 H 2 0 H D 0 1 4 9 5 12 12 375 ED 2365/2021 160.00 Lekembr 3 1 H 2 0 H 1 0 H 9 5 5 5 4 10 1 376 ED 2365/2021 160.00 Lekembr 5 0 H <		370	ED	19/05/2021	20:15:00	West Brom	West Ham	1	3	A	1	1 D	N	A Oliver	14	21	4	9	8	11		
372 E0 23/5/2021 160.00 Addressive 2 1 H 1 0 H SAthweit 6 23 3 7 11 12 373 E0 23/5/2021 160.00 Addressive 0 2 A 0 1 A Graverage H 10 0 4 12 6 374 E0 23/5/2021 160.00 Lendes Walt Born 3 1 H 2 0 H D/2 out 17 14 8 5 12 12 378 E0 23/5/2021 160.00 Lendes Terrheim 2 4 1 1 D A R 9 8 376 E0 23/5/2021 160.00 Lenders Terrheim 2 0 H 1 0 H Passo 10 11 6 4 9 8 376 E0 23/5/2021 160.00 Lenders 5 0 H 2 0 H M 10		371	E0	23/05/2021	16:00:00	Arsenal	Brighton	2	0	н	0	0 D	J	Moss	16	5	5	1	10	8		
373 ED 2345/2021 Holdon Human Newcastrik 0 2 A 0 1 A C Managen H 10 0 4 12 6 374 ED 2345/2021 1600.00 Levelaw Weit Brom 3 1 H 2 0 H Dicole 17 14 9 5 12 12 378 ED 2345/2021 1600.00 Levelaw Teambarn 2 4 A 1 1 D A Alloy 1 6 4 9 8 378 ED 2345/2021 1600.00 Levelow Fall 3 0 H 1 D A 4 10 8 10 3 3 11 1 8 10 3 8 10 378 ED 2345/2021 1600.00 Hembrids 3 0 H 1 0 H 10 H		372	E0	23/05/2021	16:00:00	Aston Villa	Chelsea	2	1	н	1	0 Н	s	Attwell	6	23	3	7	11	12		
374 ED 2365/2021 160.000 Lendom Watel Brown 3 1 H 2 0 H Dickste 17 14 9 5 12 12 378 ED 2365/2021 160.000 Leester Tentmann 2 4 A 1 1 D Alaysis 1 6 4 9 6 378 ED 2365/2021 160.000 Leester Tentmann 2 0 H 1 D Alaysis 1 6 4 9 6 377 ED 2365/2021 160.000 Leester 5 0 H 2 0 H MOIter 21 8 11 3 8 10 378 ED 2365/2021 160.000 Leester 3 0 H 0 H MOIter 1 3 31 1 1 379 ED 2365/2021 160.000		373	E0	23/05/2021	16:00:00	Fulham	Newcastle	0	2	A	0	1 A	C K) Gwanagh	14	10	0	4	12	6		
375 E0 23/05/2021 160/000 Likewise Tother stam 2 4 A 1 D A Tayler 10 1 6 4 9 6 376 E0 23/05/021 160:00 Linexon Orstall 2 0 H 1 0 H F 5 5 4 10 8 376 E0 23/05/021 160:00 Morechy Eventon 5 0 H 2 0 H MOliver 2 8 11 3 8 10 378 E0 23/05/021 Bounds Bounds 5 0 H 0 H NOIver 2 8 11 3 8 10 378 E0 23/05/021 H60:000 Bounds 3 0 H 0 H MOlver 21 8 10 3 3 11 1 379 E0 23/05/021 </td <td></td> <td>374</td> <td>E0</td> <td>23/05/2021</td> <td>16:00:00</td> <td>Leeds</td> <td>West Brom</td> <td>3</td> <td>1</td> <td>н</td> <td>2</td> <td>0 Н</td> <td>C</td> <td>Coote</td> <td>17</td> <td>14</td> <td>9</td> <td>5</td> <td>12</td> <td>12</td> <td></td> <td></td>		374	E0	23/05/2021	16:00:00	Leeds	West Brom	3	1	н	2	0 Н	C	Coote	17	14	9	5	12	12		
376 ED 22/65/221 160:000 Unwpool Parace Parace 2 0 H 1 0 H Parace 10 5 5 4 10 8 577 ED 22/65/221 16:00:00 MonChy Eventon 5 0 H 2 0 H MOliver 21 8 11 3 8 10 578 ED 22/65/221 16:00:00 MonRy 1 0 H 1 0 H K Norman 1 3 3 11 1 579 ED 22/65/221 16:00:00 Weat Hem Southerption 3 0 H 2 0 H Addresson 4 4 14 3 579 ED 22/65/221 16:00:00 Weat Hem Southerption 3 0 H 2 A M Addresson 4 4 14 3 580 <td< td=""><td></td><td>375</td><td>E0</td><td>23/05/2021</td><td>16:00:00</td><td>Leicester</td><td>Tottenham</td><td>2</td><td>4</td><td>A</td><td>1</td><td>1 D</td><td>A</td><td>Taylor</td><td>10</td><td>11</td><td>6</td><td>4</td><td>9</td><td>8</td><td></td><td></td></td<>		375	E0	23/05/2021	16:00:00	Leicester	Tottenham	2	4	A	1	1 D	A	Taylor	10	11	6	4	9	8		
377 E0 23/35/2021 16/00:00 Main City Eventon 5 0 H 2 0 H MOliver 21 8 11 3 8 10 378 E0 23/35/2021 16/00.00 Monitory 1 0 H 1 0 H 1 0 H K Friend 12 10 3 3 1 1 378 E0 23/05/2021 16/00.00 Weit Hem Soutuarytics 3 0 H 2 0 H Millionen 14 17 7 5 5 9 380 E0 23/05/2021 16/00.00 Weit Hem Main United 1 2 A 1 2 M Main United 3 1 2 Millionen 14 17 7 5 5 9 380 E0 23/05/2021 16/00.00 Weitees Main United 1 2 A 1 </td <td></td> <td>376</td> <td>E0</td> <td>23/05/2021</td> <td>16:00:00</td> <td>Liverpool</td> <td>Crystal Palace</td> <td>2</td> <td>0</td> <td>н</td> <td>1</td> <td>0 Н</td> <td>C P</td> <td>Pawson</td> <td>19</td> <td>5</td> <td>5</td> <td>4</td> <td>10</td> <td>8</td> <td></td> <td></td>		376	E0	23/05/2021	16:00:00	Liverpool	Crystal Palace	2	0	н	1	0 Н	C P	Pawson	19	5	5	4	10	8		
378 ED 23/55/221 160:00 Whether Member 1 0 H 1 0 H K Friend 12 10 3 3 11 1 379 ED 23/55/221 160:000 Weat Hem Southerpton 3 0 H 2 0 H Addresson 14 17 7 5 9 380 ED 23/55/221 160:000 Weets Mar. United 1 2 A 1 2 A Moment 4 9 4 14 3		377	E0	23/05/2021	16:00:00	Man City	Everton	5	0	н	2	0 Н	N	/ Oliver	21	8	11	3	8	10		
379 ED 22/05/2021 1600.00 Wwet Hem Southumpton 3 0 H 2 0 H Alteriority 14 17 7 5 9 380 ED 22/05/2021 1600.00 Weiler Mar. United 1 2 A 1 2 A Monton 14 17 7 5 9 380 ED 22/05/2021 1600.00 Weiler Mar. United 1 2 A 1 2 A Monton 14 9 4 14 3		378	E0	23/05/2021	16:00:00	Sheffield United	Burnley	1	0	н	1	0 Н	к	Friend	12	10	3	3	11	1		
360 ED 23/5/2021 150:00 Wolves Mar United 1 2 A 1 2 A MDean 14 9 4 4 14 3		379	E0	23/05/2021	16:00:00	West Ham	Southampton	3	0	н	2	0 Н	A	A Atkinson	14	17	7	5	5	9		- I
		380	E0	23/05/2021	16:00:00	Wolves	Man United	1	2	A	1	2 A	N	/ Dean	14	9	4	4	14	3		
To f 1+	10.1.11	1																				Mr.

(Refer Slide Time: 02:50)

		Marri	lasant	0.4	Kanad		lasta Ua									Tented 4	Lucien	0	
1	e cou	view	insert	Cell	Neme	V 14	agets ne		La l							Inusted g	Julia 1.0.2	0	
	1 0. 4		т	P nu			Lode	•	100										
ы	In [6]:	df_tr	ain - I	DataFra	ne (CSV.	File(E0_20_21.	.csv"));											
11	Out[6]:	380×1	06 DataF	rame											S column	is and 355 rd	ows omitted		
11		WaxCD	MaxCA	AvgCH	AvgCD	AvgCA	B365C>2.5	B365C<2.5	PC>2.5	PC-2.5	MaxC>2.5	MaxC<2.5	AvgC>2.5	AvgC<2.5	AHCh	B365CAHH	B365CAHA		
11		*loat64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64	Float64		
11		4.2	1.71	5.36	3.93	1.67	2.0	1.8	2.06	1.86	2.1	1.92	2.0	1.84	0.75	2.01	1.89		
11		3.33	2.55	3.08	3.22	2.47	22	1.66	2.26	1.72	2.27	1.78	2.18	1.7	0.25	1.78	2.13		
11		6.75	12.27	1.28	6.16	10.63	1.5	2.62	1.51	2.76	1.53	2.82	1.5	2.62	-1.5	1.85	2.05		
11		3.78	3.99	2.01	3.57	3.79	1.9	1.9	2.0	1.92	2.0	2.05	1.91	1.92	-0.5	2.03	1.87		
11		3.5	2.38	3.32	3.33	2.28	2.2	1.66	2.23	1.74	2.28	1.82	2.15	1.73	0.25	1.92	1.98		
11		3.5	4.05	2.07	3.39	3.79	2.0	1.8	2.08	1.85	2.15	1.92	2.05	1.79	-0.5	2.09	1.81		
11		4.7	1.6	5.91	4.35	1.56	1.72	2.1	1.71	2.27	1.8	2.27	1.71	2.17	1.0	1.93	1.97		
11																			
11		2.97	2.77	3.23	2.85	2.62	3.2	1.36	3.15	1.41	3.2	1.44	3.01	1.39	0.25	1.7	2.1		
11		4.23	6.85	1.59	4.03	6.15	1.9	1.9	2.03	1.89	2.07	1.94	1.98	1.85	-1.0	2.09	1.81		
11		4.0	5.7	1.73	3.81	5.05	2.01	1.89	2.03	1.89	2.04	2.05	1.96	1.88	-0.75	1.97	1.93		
		5.4	10.0	1.37	5.07	8.7	1.66	2.2	1.71	2.27	1.76	2.37	1.68	2.22	-1.25	1.86	2.04		Mr.C
		4.8	7.16	1.51	4.46	6.48	1.66	2.2	1.66	2.36	1.76	2.37	1.67	2.24	-1.0	1.82	2.08		66
		3.52	2.32	3.34	3.37	2.25	2.02	1.88	2.02	1.91	2.07	1.92	1.97	1.86	0.25	1.97	1.96		100

So, this gives me the data set that I am looking for. So, there are 380 gaming are being played, ok. And there are 106 columns are there. So, there is lots of columns are there, ok.

(Refer Slide Time: 03:04)

(Refer Slide Time: 03:06)

AP SO

(Refer Slide Time: 03:07)

And now my what I am going to do, I want to model number of goals scored by. So, if I just go back there and you know, if I Note dot txt click on that. So, I want to come full-time home team goal that is FTHG. This is what I want to model, ok. So, what I want to model is let us the model is, ok.

(Refer Slide Time: 03:30)

First is let me just at least write down few things FTHG. These are the basic definitions. Let me just copy it down, ok. These are the variable definition, ok. Variable Definition, ok. And then I will just copy few more things. Can there is all these information's so I am going to, ok.

(Refer Slide Time: 04:23)

And some of the betting statistics as well, ok. Opsee; alright so, let me just stop here. So, these are the, so, now, FTHG is the one of the variable here FTHG. This is the home teams code basically full-time. How many goals scored by the home team?

(Refer Slide Time: 05:04)

So, this is what the, what we want to model. And we want to model as a function of what? We want to model it as a function of maybe, you know, home team, how many shots were taken by the home team? And like HS. And how many shots were taken by away team? Ok. And then how many home team shots on target? Ok. And then away team shots on target. Then home team corners. How many corners were taken by home team away team corners?

And then maybe BETrix 65, the score by BETrix 365. And away teams score all these things we want to model. This is the model that we want to model. But the home team is. So, model this is my model. This is the model that we want to fit, ok. So, this is, so, effectively this will be like home Poisson, lambda Poisson lambda. And then log of lambda BDA lambda equals to beta naught plus beta 1 HS so, this way beta 2, beta 3, beta 4, beta 5, beta 6, beta 7 and beta 8.

So, this is pretty much what we have, ok. So, let me not take dollar here. So, maybe, I will just put it like this. I will put it like this. Let me run it, ok. Yeah so, maybe I will just put, yeah. If I just do this, probably this is, we will make, ok. So, maybe I will just put begin equation array, e q n a r r a y and end equarray. And it will work.

(Refer Slide Time: 08:41)

	View Insert Cell Kernel Widgets Help Notebook saved Trusted P Julia 1.8.2 O	
8 + %		
	ABP = Away Team Bookings Points (10 = yellow, 25 = red)	
	B365H = Bet365 home win odds	
	B365A = Bet365 area dods B365A = Bet365 away win odds	
	BSH = Blue Square home win odds BSD = Blue Square draw odds	
	BSA = Blue Square away win odds	
	Model	
	FTHG Poisson()	
	$\log(\lambda) = \beta_0 + \beta_1 H S + \beta_2 A S + \beta_3 H S T + \beta_4 A S T + \beta_5 H C + \beta_6 A C + \beta_7 B 365 H + \beta_3 B 365 A$	
	MLE Estimates	
In [7]:	: using CRRao	
	<pre>modl = fit(#formule(FTHG - HS + AS + HST + AST + HC + AC +8365H + B365A),df_train,PoissonRegression())</pre>	
	LoadError: UndefVarError: @formula not defined	
	wa ankyanawan nameawak me wafilia	
		1
In []:		OF NO

Yeah. So, this is what the, this is what the model I want to fit. And so, for that, I am going to call CRRao. And the first model that we are going to fit is fit, ok. At the rate formula, ok and first is FTHG, FTHG and then HS plus AS plus HST plus AST plus HC plus AC plus B365, opsee B365H plus B365A. Now, after that, I have to give the name of the data set df train, ok. And then I have to give, I have to say the class of the thing, but X.

(Refer Slide Time: 10:18)

ocharks	O O O Don M Chance Ins	ICNA 🛅 Scurish's BookMark 🔗 Finance Research M Gmail 🍳 Map	s 👩 News 峰 Trans	siane	NI NI
¢	Product < Solutions < Open :	Source ~ Pricing		7 Sign in Sign u	P
xKDR	/ CRRao.jl Public			Q Notifications ♀ Fork 12 ☆ Star	r 17 -
> Code	⊙ Issues 25 11 Pull requests 16	🖓 Discussions 💿 Actions 🗄 Projects 🛈 Security 뉟	⊻ Insights		
	P main - P 16 branches ⊙2 ta	gs Go	to file Code +	About	
	sourish-omi Merce pull request #10	6 from ShouvikGhosh2048/bootstrap re v bi63984 jast monti	1 240 commits	No description, website, or topics pravided	
	alter	Lindata das Ci ta trianas Decumentas	2 months and	D Readme	
	docs	Merce branch 'main' into doc update	6 months ago	4 MIT license	
	src src	Add Bootstrap Regression (Linear Regression)	2 months ago	습 17 stars	
	test	Updated tests to use new version of bijectors	last month	및 12 forks	
	JuliaFormatter.tomi	Added config file for JuliaFormatter, and did prettification on	10 months ago		
		Initiating repository	last year	Releases 1	
	CONTRIBUTING.md	Create CONTRIBUTING.md	2 months ago	() v0.1.0 (Latest)	
	LICENSE	Initiating repository	last year	on Jan 12	
	Project.toml	Added brush pegan test	2 months ago	Dackanes	
	C README.md	Fix readme	2 months ago	No packages published	aa
					a contraction

(Refer Slide Time: 10:22)

So, maybe I will just CRRao package. I will just go to the stable, doc package.

(Refer Slide Time: 10:32)

→ C	(stable/#API-Reference 🖞 🕁 🤯 🚱 🕅 🏟 🗄 🚺 🌑 :
Bookmarks 🕲 🧐 🕲 Don M Ch	ance Ins 🛅 CCNA 🗎 Scurish's BookMark 😵 Finance Research M Gmail 💡 Maps 💼 News 📭 Translate
CRRao.jl	Tutorial: Bayesian Logistic Regression
	API Reference
me	General Interface
fanual	 Understanding the interface
PI Reference	 Model Classes and Data Models
nual	• Link functions.
	 Prior Distributions
Suide	 Setting Random Number Generators
Reference	Frequentist Regression Models
Seneral Interface	 Linear Regression
	 Logistic Regression
requentist Regression Models	 Negative Binomial Regression
Bayesian Regression Models	 Poisse Regression
	 Extended functions from StatsAPLjI
	Bayesian Regression Models
	 Linear Regression
	 Logistic Regression
	 Negative Binomial Regression
	 Poisson Regression
	Guide +
	Powered by Documenter if and the Jula Programming Language.
s (Tredr. gittub Jo/CRRad)//stable/api/frequentis	Legesson/aposton-Regie.

(Refer Slide Time: 10:35)

	/stable/api/frequ	uentist_reg	gression/	#Poisson-	Regressio	n			й <u>О</u>	r 🔻 🕲 i	β D	7.1	F 161	* (± 11	0		6
Bookmarks 🕄 🕄 🕄 Don M C	ance ins 🗎 0	:CNA 🗎	Sourish's	BookMark	Finan	ce Researc	h M (Smail 🤇	Maps 💼 News 📭 Translab	0								NPT
CRRao.jl	Poisso	on Reg	gressi	ion														
Search docs	StatsAP	I.fit –	Method															
ne	fit(fo	ormula::F	FormulaT	'erm, da	ta::Data	Frame, I	odelCla	iss::Po	issonRegression)	8								
nual	Fit a Pois	sson Regr	ession m	odel on t	he input d	lata (with	the defa	ault link	function being the Log link).	Uses the glm								
uide	method f	from the G	GLM pac	kage und	er the ho	od. Retur	ns an ob	ject of t	rpe									
Reference	Frequen	tistRegr	ession{	:Poissor	Regressi	.on}.												
	Example																	
eneral Interface																		
equentist Regression Models	julia>	 using (sanction) 	CRRao, R on = dat	Dataset aset("Z	s, Stats elig", "	Models sanctio	•											
inear Regression	78×8 D	JataFrame	1	(-														
Logistic Ressourcion	Row	Mil	Соор	Target	Import	Export	Cost	Num	NCost									
departi a Disemial Descaria		Int32	Int32	Int32	Int32	Int32	Int32	Int32	Cat									
Negative binomai Negression	1	1	4	3	1	1	4	15	major loss									
oisson Regression	2	0	2	3	0	1	3	- 4	modest loss									
Extended functions from StatsAPLI	3	0	1	3	1	0	2	1	little effect									
vesian Repression Models	4	1	1	3	1	1	2	1	little effect									
	6	0	1	3	0	1	2	1	little effect									
	1		1	1	1	- 1	- 1	- 1	1									
		1	3	1	1	1	2	14	little effect									
	/5		2	1	0	0	1	2	net gain									
	75	6			0	1	2	1	little effect								None and	100
	73 74 75	0	1	3				13	little effect									
	75 76	0	1 4	3	1	8	2	10									S THE R	8
	73 74 75 76 77	0 0 0	1 4 1	3	1 0	0 0	2	1	net gain								12	
im v0.1.0 V	73 74 75 76 77 78	0 0 0 1	1 4 1 3	3 2 1	1 0 1	0 0 1	2 1 2	10	net gain little effect								00	

(Refer Slide Time: 10:38)

Rookmarks Q Q Q Q Don M Chance Ins	s. PE CONA PE Souris	h's RonkMark	A Finance Resea	rh M	Gmail 0	Mans 👼 News	Translate				
	* _ *		*		**	untas rana	- Indiana				N
CRRao.jl	2 0 2	3	0	1 3	4	modest loss					
	3 0 1	5	1	0 2 • 0	1	little effec	t 4				
Search docs	5 0 1	1 3	1	1 2	1	little effec	+				
	6 0 1	3	ê	1 2	1	little effec	t				
e	1 1 1	1	1 1	1	1	1					
	73 1 3	5 1	1	1 2	14	little effec	t				
uai	74 0 2	2 1	0	0 1	2	net gain					
ide	75 0 1	1 3	0	1 2	1	little effec	t				
	76 0 4	3	1	0 2	13	little effec	t				
Reference	77 0 1	2	0	0 1	1	net gain					
	/6 1 3	, 1	1	1 4	10	a rows omitt	t ad				
	julia> container =	fit(@formu	la(Num ∼ Targ	et + Coo	p + NCost), sanction,	PoissonRegres	sion())			
requentist Regression Models	Model Class: Poisso	on Regressi	n								
Linear Regression	Likelihood Mode: Po	bison									
	Computing Method: (ntimizatio									
Looirtic Postorring	comporting nethods of	AP C 1 11 2 0 C 2 0									
Logistic Negression											
Negative Binomial Regression		Coef.	Std. Error	z	Pr(> z)	Lower 95%	Upper 95%				
Negative Binomial Regression Poisson Regression		Coef.	Std. Error	z	Pr(> z)	Lower 95%	Upper 95%				
Negative Binomial Regression Poisson Regression Extended functions from StatsAPL(I	(Intercept)	Coef. -1.91392	Std. Error 0.261667	z -7.31	Pr(> z) <1e-12	Lower 95%	Upper 95%				
Negative Binomial Regression Poisson Regression Extended functions from StatsAPLJI	(Intercept) Target	Coef. -1.91392 0.157769	Std. Error 0.261667 0.0653822	z -7.31 2.41	Pr(> z) <1e-12 0.0158	-2.42678 0.0296218	-1.40106 0.285915				
Negative Binomial Regression Poisson Regression Extended functions from StatsAPL[] avesian Regression Models	(Intercept) Target Coop	Coef. -1.91392 0.157769 1.15127	Std. Error 0.261667 0.0653822 0.0561861	z -7.31 2.41 20.49	<pre>Pr(> z) <1e-12 0.0158 <1e-92 </pre>	-2.42678 0.0296218 1.04114	-1.40106 0.285915 1.26139				
Negative Binomial Regression Poisson Regression Extended functions from StatsAPLJI ayesian Regression Models	(Intercept) Target Coop NCost: major loss	Coef. -1.91392 0.157769 1.15127 -0.324051	Std. Error 0.261667 0.0653822 0.0561861 0.230055	z -7.31 2.41 20.49 -1.41	<pre>Pr(> z) <1e-12 0.0158 <1e-92 0.1590 41.590</pre>	-2.42678 0.0296218 1.04114 -0.774951	Upper 95% -1.40106 0.285915 1.26139 0.126848				
oopuis Augustan Negative Binomial Regression Poisson Regression Extended functions from StatsAP(j) yessian Regression Models	(Intercept) Target Coop NCost: major loss NCost: modest loss	Coef. -1.91392 0.157769 1.15127 -0.324051 1.71973 0.467097	Std. Error 0.261667 0.0653822 0.0561861 0.230055 0.100518 0.160518	z -7.31 2.41 20.49 -1.41 17.11 2.37	<1e-12 0.0158 <1e-92 0.1590 <1e-64	-2.42678 0.0296218 1.04114 -0.774951 1.52272 0.12097	Upper 95% -1.40106 0.285915 1.26139 0.126848 1.91674 0.705044				
uggista Regression Poisson Regression Extended functions from StatAPI (I syssian Regression Models	(Intercept) Target Coop NCost: major loss NCost: modest loss NCost: net gain	Coef. -1.91392 0.157769 1.15127 -0.324051 1.71973 0.463907	Std. Error 0.261667 0.0653822 0.0561861 0.230055 0.100518 0.16992	z -7.31 2.41 20.49 -1.41 17.11 2.73	<pre>Pr(> z) <1e-12 0.0158 <1e-92 0.1590 <1e-64 0.0063</pre>	-2.42678 0.0296218 1.04114 -0.774961 1.52272 0.13087	Upper 95% -1.40106 0.285915 1.26139 0.126848 1.91674 0.796944				
ugguta magnasani Ngatiw Binamil Regression Polsson Regression Extended functions from StatsAP (J) syesian Regression Models	(Intercept) Target Coop major loss NCost: modest loss NCost: net gain	Coef. -1.91392 0.157769 1.15127 -0.324051 1.71973 0.463907	Std. Error 0.261667 0.0653822 0.0561861 0.230055 0.100518 0.16992	z -7.31 2.41 20.49 -1.41 17.11 2.73	<pre>Pr(> z) <1e-12 0.0158 <1e-92 0.1590 <1e-64 0.0063</pre>	Lower 95% -2.42678 0.0296218 1.04114 -0.774951 1.52272 0.13087	Upper 95% -1.40106 0.285915 1.26139 0.126848 1.91674 0.796944	source			
unguns angestenni Polason Regression Extended functions from SatuAPLJ ayesian Regression Models	(Intercept) Target Coop NCost: major loss NCost: modest loss NCost: net gain	Coef. -1.91392 0.157769 1.15127 -0.324051 1.71973 0.463907	Std. Error 0.261667 0.0653822 0.0561861 0.230055 0.100518 0.16992	z -7.31 2.41 20.49 -1.41 17.11 2.73	Pr(> z) <1e-12 0.0158 <1e-92 0.1590 <1e-64 0.0063	Lower 95% -2.42678 0.0296218 1.04114 -0.774951 1.52272 0.13087	Upper 95% -1.40106 0.285915 1.26139 0.126848 1.91674 0.796944	source			
ugun agun agunan Kapaté Bonni Bagrasion Patson Regresion Extended functions from SataARIJ ayesian Regression Models	(Intercept) Target Coop NCost: major loss NCost: modest loss NCost: net gain	Coef. -1.91392 0.157769 1.15127 -0.324051 1.71973 0.463907	Std. Error 0.261667 0.0653822 0.0561861 0.230955 0.100518 0.16992	z -7.31 2.41 20.49 -1.41 17.11 2.73	<pre>Pr(> z) <1e-12 0.0158 <1e-92 0.1590 <1e-64 0.0063</pre>	Lower 95% -2.42678 0.0296218 1.04114 -0.774951 1.52272 0.13087	Upper 95% -1.40106 0.285915 1.26139 0.126848 1.91674 0.796944	source			
ngno agustani Regension Palaon Regension Datande functions from StatuRP () yeelian Regension Models	(Intercept) Target Coop NCost: major loss NCost: modest loss NCost: net gain	Coef. -1.91392 0.157769 1.15127 -0.324051 1.71973 0.463907 tions fro	Std. Error 0.261667 0.0653822 0.0561861 0.230955 0.100518 0.16992	z -7.31 2.41 20.49 -1.41 17.11 2.73	<pre>Pr(> 2) <10-12 0.0158 <10-92 0.1590 <10-64 0.0063</pre>	Lower 95% -2.42678 0.0296218 1.04114 -0.774951 1.52272 0.13087	-1.40106 0.285915 1.26139 0.126848 1.91674 0.796944	source			
vegani negatiwa Regression Repression Extended functions from SatuAR() ayesian Repression Models	(Intercept) Target Coop NCost: major loss NCost: modest loss NCost: net gain	Coef. -1.91392 0.157769 1.15127 -0.324051 1.71973 0.463907 tions fro	Std. Error 0.261667 0.0653822 0.0561861 0.230055 0.109518 0.16992 0.16992	z -7.31 2.41 20.49 -1.41 17.11 2.73	<pre><rul><1e-120.0158<1e-920.1590<1e-640.0063</rul></pre>	Lower 95% -2.42678 0.0296218 1.04114 -0.774951 1.52272 0.13087	Upper 95% -1.40106 0.285915 1.26139 0.126848 1.91674 0.796944	source			60

So, API reference Poisson regression, what I will do is what I have to do. Yeah. So, Poisson regression, that is what we have to do here. So, PoissonRegression. So, if I just, if you write POI and then tab, it will fill it up for itself. Now, if you just do this, this will fill a, set a fit a maximum likelihood estimate, ok.

Maximum likelihood estimate or MLE estimates, ok. Let me just put it up there. Yeah, and now let me just run this. Why it is not formula? Ok. So, I have to, maybe I have to call a StatsModels. Yeah StatModels, I need. Yeah so, yeah. And I think now it is fine, ok.

(Refer Slide Time: 11:50)

So, if I look into it, HST home, number of shot on target by home team is either going to have a very strong effect, positive effect. Obviously more shot you have on the target, the chance of having score is I. And then this is another home team, now shot and has a effect. And then this is also home team number of goal, number of corner by home team. And what is the weight 365s, hours odds for the away team? That also is the important role.

And you can see that this coefficient has a positive effect alright interesting phenomena that we are getting. Now, suppose we want to predict, suppose we want to fit Bayesian regression model, Bayesian Poisson regression model with, say ridge prior Bayesian Poisson let me Bayesian Poisson Regression with Ridge Prior, R i d g e, Ridge Prior. So, if I just run this. So, the if you just go there, all I have to do is essentially just copy this thing. And; obviously, now I want to change the name, maybe I will say ridge.

And after the Poisson regression, I would say Prior Ridge. And if you just Prior underscore R, and then if you just tab, it will take the rest of the thing, ok. So, you do not have to really worry about that. Let me just put it here. So, that you know it is kind of aligned. And you can see the entire model.

(Refer Slide Time: 14:19)

(Refer Slide Time: 14:26)

So, let me just run it. So, if you look into the, by default, it always simulate 1000 samples. And if you look into the rhat, you see the rhats are all close to 1. So, it took 500 burning. And after that, it simulated 1000 samples after burning. It is very fast because it uses Hamiltonian Monte Carlo method.

(Refer Slide Time: 14:50)

8	File Edit View	v Insert	Cell Kerr	nel Widget	s Help					Trusteo	1	Julia 1	8.2 C		
8	+ * 2	5 + +	🕨 Run 📕	C » Cod	e v										
	r,	max_namiit	onian_ener	gy_error,	tree_deptn	, numericai	error, step	size, nom	step_size						
	Su	marv Stati	stics												
		araneters	nean	std	ncse	ess_bulk	ess_tail	rhat	-						
		Symbol	Float64	Float64	Float64	Float64	Float64	Float64	-						
		,	0 1050	0 0244	0 0017	554 4956	470 6723	1 0013							
		6(1)	-0.0632	0.1055	0.0042	665.7215	482.7547	1.0029							
		6[2]	-0.0336	0.0135	0.0005	807.1235	709.5762	0.9994							
		6[3]	-0.0258	0.0132	0.0005	587.5589	648,2038	0.9997							
		β[4]	0.2235	0.0239	0.0009	703.6354	519.9746	1.0042	-						
		6(5)	0.0155	0.0269	0.0011	600.0533	560,6737	1.0010							
		6161	-0.0494	0.0181	0.0006	1087.5750	936.7700	1.0031							
		B[7]	0.0281	0.0180	0.0006	979.2808	678.5209	0.9991							
		β[8]	-0.0407	0.0281	0.0010	833.8843	435.4233	0.9993							
		β[9]	0.0287	0.0133	0.0005	789.2598	551.1041	1.0032	-						
							1	column omit	ted						
	0.0	antiles.													
	20	inclies	1 51	25.05	50.05	75.05	07 53								
		Symbol	Float64	Float64	Float64	Float64	Float64								
		-,													
		λ	0.0596	0.0826	0.0977	0.1210	0.1975								
		β[1]	-0.2842	-0.1266	-0.0540	0.0059	0.1251								
		β[2]	-0.0604	-0.0431	-0.0338	-0.0234	-0.0089								
		β[3]	-0.0516	-0.0347	-0.0258	-0.0166	-0.0004								
		β[4]	0.1749	0.2076	0.2236	0.2400	0.2691								
		β[5]	-0.0389	-0.0032	0.0163	0.0338	0.0655								
		β[6]	-0.0859	-0.0617	-0.0492	-0.0365	-0.0154								No. of Concession, Name
		β[7]	-0.0093	0.0162	0.0285	0.0396	0.0644							18	W.S.S.S.
		β[8]	-0.0941	-0.0590	-0.0416	-0.0221	0.0157							6	Mar 1
		6[9]	0.0023	U.0202	0.0286	0.0369	0.0563							123	A BREAT THE YEAR

And these are the coefficients estimates. So, here you have 1, 2, 3, 4, 5, 6, 7, 8, 8 coefficients and intercept and now here also. So, total 9. So, you can see there are 9 coefficients, including first one is the intercept and lambda is the scale parameter that is required, ok.

So, intercept is negative 0.35 in MLE. And we are getting slightly off here, negative 0, 6. Others are like negative 0, 3 for HS, negative 0 3, negative 0 2, 4, yeah. So, the other value that looks like 0.238 for HST, which is 2, 3, 4th coefficient 0.22, yeah. So, the coefficients looks like similar to close to that of MLE. But it is very simple.

(Refer Slide Time: 16:17)

(Refer Slide Time: 16:19)

(Refer Slide Time: 16:22)

(Refer Slide Time: 16:28)

If you want to see the detail of the Ridge Prior, I think you can go to the right, API References of General Interface General Interface and then Prior Distribution. So, the first thing you can say prior Gauss and then here is the ridge prior and all the definition of the ridge prior.

The way it is written, we have taken a appropriate distribution means Poisson, then you just take the Poisson and automatically it will do the rest of the thing. So, this is the ridge prior, the way it is defined in this in CRRao.

(Refer Slide Time: 16:48)

Next, we can try Laplace priors on the beta, Laplace distribution being imposed and inverse gamma prior is being imposed on the Poisson regression.

(Refer Slide Time: 17:08)

(Refer Slide Time: 17:13)

So, if I want Poisson regression with Poisson regression with Laplace priors, you can plot very easily using CRRao. So, Laplace Prior, all you have to do Laplace Prior, opsee, sorry, I have to do a mark down, ok. Now, it is fine. So, Bayesian Regression with Laplace Prior so, all you have to do is just copy this guy.

So, now on the coefficient, we are applying Laplace Prior, Laplace Prior distribution. On the coefficient, this is typically. So, you just change the name of the prior Laplace and it should and run. And CRRao will understand automatically that, ok, this is Laplace Prior that the user want to apply and boom, it runs and it gives you the all the estimates. So, by default, it will simulate 1000 samples after 500 burning. So, from 501 to 1500 iteration is being reported, rhat are all close to 1.

(Refer Slide Time: 18:24)

	File Edit View Insert	Cell Ken	nel Widget	s Help					Trusted & Julia 1.8.2 O	
	8 + × 0 6 + +	▶ Run 🔳	C H Cod	e ~						
Ē	internals	= 1p,	n_steps,	is_accept,	acceptance	_rate, log_	density, h	amiltonia	an_energy, hamiltonian_energy_erro	
	r, max_namilt	onian_ener	gy_error,	tree_depth	, numerica.	_error, ste	p_size, no	n_step_s1	1120	
	Summary Stati	stics								
	parameters	nean	std	ncse	ess_bulk	ess_tail	rhat	e		
	Symbol	Float64	Float64	Float64	Float64	Float64	Float64	-		
	λ	0.0786	0.0337	0.0013	724.3468	725,8954	1.0020	-		
	B[1]	-0.0682	0.1186	0.0060	547.0632	340.8748	1.0023			
	β[2]	-0.0371	0.0135	0.0006	560.2454	454.6632	1.0035	-		
	β[3]	-0.0241	0.0127	0.0005	713.8269	548.4412	0.9994	-		
	β[4]	0.2313	0.0235	0.0010	585.1491	632.8193	1.0015	-		
	β[5]	0.0121	0.0228	0.0008	750.6048	714.8428	1.0028	-		
	β[6]	-0.0442	0.0185	0.0008	589.7102	573.6921	1.0035	-		
	p[7]	0.0229	0.0180	0.0007	670.7255	664.3972	0.9997			
	p[0] 6(9)	0.0251	0.0207	0.0005	796.4113	750.2832	1.0017	-		
	100					1	column on	itted		
	Quant () an									
	Quantiles	2 51	25.05	50.03	75.05	97 51				
	Symbol	Float64	Float64	Float64	Float64	Float64	•			
	λ	0.0369	0.0556	0.0704	0.0921	0.1668				
	β[1]	-0.3835	-0.1179	-0.0391	0.0055	0.1107				
	β[2]	-0.0634	-0.0458	-0.0374	-0.0277	-0.0102				
	β[3]	-0.0492	-0.0326	-0.0233	-0.0156	0.0005				
	p[4]	0.1886	0.2152	0.2302	0.2479	0.2783				
	p[5] 8(6)	-0.0802	-0.0039	-0.0438	-0.0308	-0.0098				La California
	B(7)	-0.0146	0.0101	0.0234	0.0346	0.0581				State State
	β[8]	-0.0889	-0.0531	-0.0342	-0.0159	0.0135				
	1918	-0.0013	0.0156	0.0253	0.0345	0.0504				C. LEVIL N

So, this is a good news; that means, the chain has converged and you can see similar kind of things behavior you can see, ok. So, this second coefficient plus H is effective, this is strong effective, the fourth coefficient, both coefficient was my 1, 2, 3, if HST, HST is strongly have strong effect. And with the last one here, it is saying that the odds does not have any effect, the odds does not have any effect.

The 6th one is, I think it was corner, I think it was corner 1, 2, 3, 4, 5, 6, yeah, corner does have had effect yeah. So, Laplace is saying that in the MLE, we got 3 in MLE method, we it got 3 at a 5 percent level, we can say home shot, number of shot taken, number of shot on target and the bet365s odd for awaiting. But it was surprising that I would not expect that it will awaiting, so, it will have no effect on number of goals code and the Bayesian methods is actually rejecting this method.

I mean, saying though ridge prices, yes, it did indeed, but Laplace Prior is saying no, no, we are not. So, this is important that you apply different kind of models and then you compare the results. And then next we can try Cauchy Prior, ok.

(Refer Slide Time: 20:23)

So, again, very simple fitting Cauchy Prior, first we will give a name, first we will put it as a mark down and then say instead of Laplace, we see first Cauchy prior and then what we are going to do is simply plot, just copy this guy. Cauchy prior and instead of Laplace, we just let C and then tab, it will fill it up by itself and then run. So, while, ok, it just, it was very fast, it was very fast. So, and it is indeed all converged as usual; the rhat is all close to 1.

(Refer Slide Time: 21:17)

So, the this one has a effect, strong effect, this one has a strong effect, the entire 95 percent confidence bill does not include 0 and the last one also has a strong effect, this does not include 0, 6th one, the corner also has a effect.

So, corner number of shots, number of shots on target, number of shots, number of shots on target, number of corners, these are going to have an effect, the model is again and again saying and the odds of the Away Team by Bet365 seems like having an effect, not maybe strong or something, but it seems like it does have an effect.

(Refer Slide Time: 22:04)

So, what is Cauchy prior? Let us see it will Cauchy prior in the everything of the model is same, but on the beta and alpha, on the coefficient we put Cauchy prior with a scale parameter have a half Cauchy distribution. So, this is very robust prior and next what we will try, we will try T-distributed prior, ok.

(Refer Slide Time: 22:27)

So, here we are going to scaled T-distribution, distributed prior on the beta and alpha and on the scale, we implement it InverseGamma prior. So, very variety of prior options we have in the CRRao.

(Refer Slide Time: 22:58)

So, what we are going to do next is T-distributed prior, we are going to implement the T-distributed prior, ok. T-Distributed, ok. Just you write T and press tab and that should be fine. It is very fast looks like, (Refer Time: 23:41) sometimes it is it is bit slow, but the T-distributed might take a little bit time, ok.

Let us see r you see T-distributed prior dies not did not able to converge you can see the r hat r 2 near 2. So, that means, definitely these the algorithm quantum integral did not converge by the 1000 samples, we need to increase the number of samples. So, and you saw it is slow.

(Refer Slide Time: 24:50)

So, I am not going to I am not going to again increase the samples and run it because it will just take time. It will, all you have to do just increase the sample. I can show you all you have to do just probably you just paid 0.95 and then you have to instead of 1000 you have to just set 10,000 and run it. But I am not going to do that because it will just take longer time. So, you try it yourself, but I am going to try another prior, which is very popular prior called HorseShoe Prior, ok.

(Refer Slide Time: 25:23)

(Refer Slide Time: 25:32)

So, let me try HorseShoe Prior and HorseShoe Prior is let me show you how the HorseShoe Prior works. So, this is the T Dist y follow proper distributed typically in natural exponential family. In the our case it will be Poisson with mu i and. So, mu i will be alpha plus x i transpose beta. And on the beta and alpha there will be a conditional normal distribution and on the scale parameters of the conditional normal distributions we will have half cauch, HalfCauchy distribution.

(Refer Slide Time: 26:11)

(Refer Slide Time: 26:15)

So, it is interesting it is a scale mixture distribution and it is very nice. It is very popular in the Bayesian literature. It has lot of good properties lot of good HorseShoe Prior, ok. So, let me just run it. I have to call it markdown and then it will run yeah. And then now what I will do, I will just copy this.

So, we what we found the T distributed prior will always require a bit of a more samples and then. So, HS I will just say and so, I do not need I will just use the default and H and then HorseShoe will work. Let me just run now ok, of course, this may be ok. Let me see if it was converged.

(Refer Slide Time: 27:15)

Ella E-B Maw Incart	Coll Kon	nal Midaat	Helo					Tourised & India 182.0
Pile bait view insert	Cell Nen	tel widget	ь нер					Indiad / Julia 1.6.2 O
8+×06++	▶ Run 📕	C H Cod	• · ·					
Compute durat parameters β[8], β[9] internals	ion = 13. = τ, 1	<pre>84 seconds λ[1], λ[2], n steps.</pre>	λ[3], λ[4], λ[5], λ[6	5], λ[7], λ	[8], λ[9], density, h	β[1], β[: amiltoniu	(2], β(3], β(4], β(5], β(6], β(7],
r, max_hamilt	onian_ener	gy_error,	ree_depth	numerical	error, ste	p_size, no	n_step_s	size
Summary C+a+i	stics							
parameters	nean	std	ncse	ess bulk	ess tail	rhat	e -	
Symbol	Float64	Float64	Float64	Float64	Float64	Float64	-	
1	0.0773	0.0517	0.0026	291.2524	304.2228	1.0015	-	
A[1]	1 2007	2 2046	0.4274	211 6001	100.5204	0.9998		
7[2]	0.0755	1 9254	0.0727	412 1677	457 4641	1 0020	- 2	
2141	5 4401	6 9296	0.4179	205 5701	210 1061	1.0010		
1(5)	0.9926	3 9799	0 2017	272 4269	229 1802	0.9991		
×[5]	1.5914	1,9399	0.0990	467.0118	509.0880	1.0003	-	
λ(7)	0.8090	1.0011	0.0472	317.6933	139.3713	1.0044	-	
λ(8)	1.1756	2.0286	0.0926	274,9769	223,6003	1.0008	-	
λ (9)	0.9210	1,1914	0.0519	429,7081	220.8793	0.9996	-	
β[1]	-0.1249	0.1794	0.0148	177.7063	236.5974	1.0027		
β[2]	-0.0331	0.0151	0.0009	278.8325	283.5533	1.0049	-	
β[3]	-0.0180	0.0122	0.0007	329.3381	563.0966	1.0025		
β[4]	0.2308	0.0234	0.0011	457.9988	390.7896	0.9996		
β[5]	0.0033	0.0202	0.0008	583.7845	639.4779	1.0026		
β[6]	-0.0451	0.0197	0.0011	348.4827	412.7304	1.0004		
β[7]	0.0154	0.0177	0.0009	438.9326	492.9998	1.0000	-	
β[8]	-0.0262	0.0262	0.0016	266.6719	443.4929	1.0005	-	
β[9]	0.0235	0.0146	0.0008	301.8840	423.2496	1.0117	-	and the second s
						column on	itted	(1) and the second s
Quantiles								
Anouer168								

(Refer Slide Time: 27:21)

Yes, you see it did converge. It did converge and the way it has been HorseShoe prior works is for each beta i there will be a local scale distributed. So, now you can see that. So, this is so; that means, for each beta 1 there will be a lambda 1 beta 2 there will lambda 2 and beta 9 there will lambda 9. And then these are the local shrinkage parameter and tau is the global shrinkage parameter.

So, all these parameters makes interesting local shrinkage and global shrinkage make the HorseShoe prior very very attractive to the Bayesian community. And what happens is what we see let us this is the intercept then next is the HS the home team shot on target. We see this is fully negative all the entire 95 percent confidence interval. Then this is number of shots on target is completely positive and this is number of corners completely negative.

If you get too many corners your number of goals score will be less somehow corner has to do with the you know negative something to do with the negative. And what we are seeing that away teams and the Bet365 does not have the odds does not have an effect by HorseShoe prior.

(Refer Slide Time: 29:06)

So, what we are seeing according to the model of. So, we can safely say HS which is home teams home team home team shot HST home team shots on target. HC HC that number of corners by home team. These are the three are the sort of sure for sure kind of model.

(Refer Slide Time: 29:32)

So, we can what we will try; we will try a slightly smaller model let us try a smaller model and home just home team shot on target home team corner number of, ok. So, that is how so, now, we have a shorter model and let us run this.

(Refer Slide Time: 29:56)

So, it will be faster equals faster yeah. So, we can see that each of these parameters were wet fast. And now what I am going to do we are going to just say predict if I just say predict you can just do use these models to predict also. And then you give the model and give the data set name. So, the data set name is say here I am using train you can have a test data also. If you just give say predict FTHG right FTHG.

(Refer Slide Time: 30:53)

And if you can see so, you can see that they are giving you the prediction also. So, this is one of the advantage of CRRao we do not have to when I mean you can fit any models and you can get the prediction also right away using just all the predict functions and it will be done. So, this is how you implement Poisson regression using you know Bayesian prior. So, Poisson regression both likelihood and the methods and the Bayesian implementation of the Poisson regression with Julia.

(Refer Slide Time: 31:34)

narks (Don	V Chance	ns 🗎 CC	NA 🗎 S	curish's BookMa	irk 🕲 Financi	Resear	ch., 1	M Gmail	💡 Maj	• 🖻	News	Translate							
Fi	le Edit	View	Insert	Cell	Kernel	Widgets	Help										Tru	sted	J	ulia 1.8.2	0
8	+ * *	6	† 4	▶ Run	C	H Code	~	Ш													
		Like • F • L • C • T	akimum lidge Pric aplace P auchy P Distribut lorse Sh:	id and l Likelihood I « nior ior ed Prior ee Prior	Bayes Methods	ian Pois	son Reg	ress	ion	using	ı Juli	a & I	CRR	10							
I	In [1]: In [6]:	usin df_t	g CSV, rain =	DataFrame DataFrame	(CSV.F	10 .le(*E0_20_	_21.csv"));														
I	In [1]: In [6]: Out[6]:	usin df_t 380×	g CSV, rain = 106 Data	DataFrame DataFrame Frame	CSV.F	10 .le("E0_20_	_21.csv"));									6 colur	nns ar	d 355	rows c	mitted	
I	<pre>In [1]: In [6]: Out[6]:</pre>	usin df_t 380× Row	g CSV, rain = 106 Data Div	DataFrame Frame Date	(CSV.F: Time	le ("E0_20_ HomeTeam	21.csv")); AwayTeam	FTHG	FTAG	FTR	HTHG	HTAG	HTR	Referee	HS	6 colur AS	nns an HST	d 355 AST	rows c HF	AF	
I	<pre>In [1]: In [6]: Out[6]:</pre>	usin df_t 380× Row	g CSV, rain = 106 Data Div String3	DataFrane DataFrane Frame Date String15	(CSV.F: Time Time	lo le("E0_20 HomeTeam String31	_21.csv")); AwayTeam String31	FTHG Int64	FTAG Int64	FTR String1	HTHG Int54	HTAG Int64	HTR String1	Referee String15 C	HS Int64	6 colur AS Int64	nns an HST Int64	d 355 AST Int64	ows c HF Int64	omitted AF Int64	
I	In [1]: In [6]: Out[6]:	usin df_t 380× Row	g CSV, cain = 106 Data Div String3 E0	DataFrame Frame Date String15 12/09/2020	(CSV.F: Time 12:30:00	le (*E0_20 HomeTeam String31 Fulham	21.csv")); AwayTeam String31 Arsenal	FTHG Int64	FTAG Int64	FTR String1	HTHG Int64	HTAG Int64	HTR String1 A	Referee String15 C Kavanagh	HS Int64	6 colur AS Int64 13	nns an HST Int64 2	d 355 AST Int64 6	ows c HF Int64	amitted AF Int64 12	
I	<pre>In [1]: In [6]: Out[6]:</pre>	usin df_t 380× Row 1 2	g CSV, rain = 106 Data Div String3 E0 E0	DataFrame DataFrame Frame Date String15 12/09/2020 12/09/2020	(CSV.F: Time 12:30:00	HomeTeam String31 Fulham Crystal Palace	21.csv")); AwayTeam String31 Arsenal Southampton	FTHG Int64 0	FTAG Int64 3	FTR String1 A H	HTHG Int54	HTAG Int64	HTR String1 A H	Referee String15 C Kavanagh J Moss	HS Int64 5	6 colur AS Int64 13 9	nns an HST Int64 2 3	d 355 AST Int64 6 5	ows c HF Int64 12 14	AF Int64 12 11	
I	In [1]: In [6]: Out[6]:	usin df_t 380× Row 1 2 3	g CSV, rain = 106 Data Div String3 E0 E0 E0	DataFrame DataFrame Trame Date String15 12/09/2020 12/09/2020 12/09/2020	es, CRR4 (CSV.F: Time 12:30:00 15:00:00 17:30:00	IC ("E0_20 HomeTeam String31 Fulham Crystal Palace Liverpool	21.csv")); AwayTeam String31 Arsenal Southarrpton Leeds	FTHG Int64 0 1 4	FTAG Int64 3 0	FTR String1 A H	HTHG Int54 0 1 3	HTAG Int64 1 0 2	HTR String1 A H	Referee String15 C Kavanagh J Moss M Oliver	HS Int54 5 22	6 colur AS Int64 13 9 6	nns an HST Int64 2 3 6	d 355 AST Int64 6 5 3	0ws c HF 112 14 9	amitted AF Int84 12 11 6	

NTA ON

So, let me just write Likelihood and Bayesian Poisson Regression using Julia the number of implementation that we have done. Likelihood Maximum Likelihood Maximum Likelihood Methods so, actually we use Julia and CRRao ok. And then we used Ridge Prior, Bayesian Ridge Prior then we used Laplace Prior, Laplace Prior, then we used Cauchy Prior, Cauchy Prior, then we used T Distributed Prior, but it was not very successful it did not converge nicely.

We had to run more samples, T Distributed Prior and finally, HorseShoe Prior, HorseShoe Prior. So, all these we implemented very nicely and using CRRao in Julia. So, I hope you enjoyed this video and we will continue this in the next video. This next video we will be doing negative binomial regression.

Thank you very much.