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Hello all, welcome back to the Predictive Analytics Regression and Classification course.

This is lecture 15 part A.
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So, in this lecture in this discussion we will start non-linear regression. So, suppose let me

start with an example, ok. Let me start with an example that suppose the there is only one y

variable and one x variable and the true relationship between y and x is sort of f is unknown

ok f is unknown.



And suppose true good relationship is this function which is generating the data this model

which is generating the data where epsilon follow some normal swipe noise or normal 0 tau

and y equal to sin x by x is the actual true model, but we do not know that this is the model.

So, what we are going to do? We are going to simulate some data from the above model and

pretend that we do not know the true function as if.

And obviously, our target is to learn or estimate this function, ok learn or estimate the

unknown function f that is our target.
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Now, if we simulate from this function and what we will have? We will and we pretend as if

we do not know what is the true relationship between x and y then what we have is only the

data the x and the y that I s all. And if we plot them this is the kind of data that you are seeing.



Now, what happens is typically this kind of data can see sometimes in physics or in some you

know biology also that you have most of your data which is hovering around 0 and then there

is a point somewhere suddenly there is a signal. So, maybe its just going like this and then

suddenly there is a signal and signal bust and came down as you deviate from the signal point

and then again its hovering around 0. So, this kind of things actually happens.

Now, question is how do you estimate this function? Ok. It is clearly there is no trend there is

some you know seasonality looks like, but its difficult just seeing the data, but can we

estimate the function here.
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So, let us try to formalize the mathematical construction of this through something called

basis function ok something called basis function, ok. So, let me just take a blue color, ok. So,



this is the basis function expansion. So, we will talk about it lets talk about it. So, suppose the

ith record is y i is some function of x i plus epsilon i.

Now, f of x we can write it as some linear combinations of beta j phi j x where phi is known

as the basis system for f of x. We can write it as phi times beta. So, phi here we can write it as

phi 1 x, phi 2 x dot dot dot phi k x ok and beta is beta 1, beta 2 dot dot dot beta k, ok.

And then we just you know if you just take the dot product what we get is essentially f of x.

So, this is typically how we assume that ok you just approximate with the phi of you do not

know the f you approximate with phi times beta.
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Now, can we have some examples? Yes; obviously, this example we have seen before y equal

to beta 1 plus beta 2 x i plus beta 3 x i square dot dot dot epsilon i. So, this is like polynomial



functions bunch of this is typically called polynomial functions f of x is my this basis

expansion kind of thing ok polynomial basis.
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Then there could be Fourier basis that we have tried this model also previously you remember

the Chennai temperature data right where we fit sin omega x cos omega x sin of 2 omega x

cos 2 omega x you have to choose the omega properly we chose omega 2 pi by P, P was our

the you know sequence the size of the season. And we can write it as phi as our basis and

betas are our coefficient.

So, we can effectively remember that we wrote our Chennai temperature data model as y

equal to phi beta plus epsilon. So, example here is consider Chennai temperature data

modeling exercise in previous lectures, ok.
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What are the other basis functions that we can consider? We can consider something called

exponential basis, we can consider Gaussian basis, we can basis correspond to spline

regression these are the basis which corresponds to spline regression. So, there are different

kind of basis are there which you can use for modeling your data.
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Now, how we estimate? So, remember that my phi is completely known the basis is complete

with the basis function the basis expand basis the set of basis function is completely known

ok what is unknown is the beta are unknown the coefficients are unknown. So, essentially my

basis expansions you can think of as a feature engineering these are engineered features, but

we are doing it in such a way essentially that we have already discussed and then we are

putting it into the you know we are trying to estimate the beta here, ok.
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So, far as so, good now I am going to expand it to an extent and to the you know. So, far we

whatever we were doing you remember that we were expanding it to the k-many functions we

were always expanding it to the k-many functions. If you look into here also we are saying dot

dot dot, but we were always saying it is k-many basis functions. So, in how many basis how

many features we will have that we are putting it as sort of a finite parameter.
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So, k turns out to be a parameter some sort of parameter. So, k is a number of features is

number of basis or features chosen by chosen by user or data scientist data scientist. So,

sometimes these choices are bit ad hoc. So, we you do not want to choose this as ad hoc you

want somewhere to you know data to decide which k to choose. So, what mathematicians

have done that can we go beyond k can we k push to infinity and its lets data decide where to

capital K here goes to infinity and can we come up with a function can we estimate this

function?

So, this is a very interesting idea. So, what they are saying that y is the function of x plus

epsilon. Epsilon for a normal 0 sigma squared i this will lead to y as a normal of f of x comma

sigma square a. But f of x is phi of beta where this guy is goes up to infinity the summation

goes up to infinity and it converges to phi of beta. So, that means, at every points it



converges, every point of x it this summation this summation does not diverge to infinity it

definitely converges to phi of beta or the f of x. So, that is the idea.

So, and in that phi k x is completely known what is unknown is beta, beta is unknown and we

want to estimate the beta. Now, assuming that betas are uncorrelated random variable and phi

k x are known deterministic real valued function. If you make these assumptions, ok then

there is a theorem by Kosambi-Karhunen-Loeve theorem we can say that f of x is a stochastic

process what is it mean? F of x is a stochastic process.

The word stochastic is a German for probabilistic, ok. So, that means, essentially for each

value of x you will get a probability distribution proper probability distribution that is

typically called properly defined distribution you will get as a value of x and that is called

probabilistic process or in German stochastic process.
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Now, what f of x is a stochastic process and if we assume these betas follow normal 0 sigma

square I then turns out f of x phi beta follow Gaussian process, ok. So, and this typically

called Gaussian process prior. So, this comes under the Bayesian method I am not going into

the detail of how these things happens and all, but I am just telling you these are called

Gaussian process prior. If you want to know more about it, you can see it in Rasmussen's

book, Rasmusen's book, ok.

Since f of x is unknown function therefore, induced process of f x is f of x is known Gaussian

process prior. So, if you press if you induce p of beta a prior on the beta that will induce a

prior on the f and that also a Gaussian process. So, that is how you induce a function a prior

distribution on the unknown function.

(Refer Slide Time: 13:04)



And turns out that there are lot of mathematics goes into I am not going to the detail

derivation of those things that f of x turns out to be a multivariate normal with phi x of beta

naught as mean and some covariance function K x x transpose and y of x, this is the most

crucial part that y of x turns out to be multivariate normal of n-dimensional, n is the sample

size, small n is the sample size, sample size.

So, small n is the sample size and phi of x, small n is. So, it is y x is going to be coming from

a multivariate normal with a dimension of sample size with mean as phi x of beta naught and

k covariance is K x x transpose plus sigma squared I.
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So, this is an interesting thing. So, then what happens that how do you. So, this is my

likelihood function, ok.
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So, this is my likelihood function let me write it down sort of likelihood model. So, this is

actually our likelihood model likely hood model, ok. And then the estimated value of y given

a x star, a new point x star this is the expected value of function sampled from the posterior at

the value of x star. 

Do not worry about the posterior prior and all these things if you are not familiar with the

Bayesian methods, but what it tells us that you can estimate the function f hat if at new point

test point x star as a function of mu x plus K x star K x and K x x sigma square I inverse y

minus mu x.

Now, this is a matrix of order n. Now, if you so; that means, in the solution this is the final

solution that is the final solution. And as you run the run this solution what happens that the

time complexity of the matrix inversion is order of n cube. So, that means, if your sample size



increases the implementation of this solution is extremely difficult. So, this is almost

impossible to implement. So, if for a very large data set, ok.
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So, this is our data model and this is some hyper parameters that typically we set and this is

the likelihood is a multivariate Gaussian distributions and this is negative log likelihood. 
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And as you know if you have a negative log likelihood. you can pass it through or similarly

you can write the negative log posterior distribution do not worry about it and you can run the

negative log likelihood through optimization routine to estimate the maximum likelihood

estimates.

So, however, often divergence of optimization routine for MLE is being reported because

Berger et al in JASA showed that the you know the GP prior model if you do not put some

prior on or penalty on the parameter space then it will have this problem so, that can be

avoided.
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So, there are some prior on the like you know is being like inverse gamma on the sigma alpha

rho and sigma some robust choice of prior has been also been given. We will do we will

understand when we will do it in hands on.
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And so, here is the experiment that we are doing at the beginning, ok. So, y is a sin x by x and

then when normal 0 tau square from this model we are going to simulate the data from the

above model and pretend that we do not know the true function we will simulate from this

model and we will pretend we do not know this model we do not know we do not know the

true function, ok.

We do not know the true function our objective is to estimate or learn the function from just y

and x.
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And what we found that this is the data this was the data that was simulated.
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And the estimated function using GP regression was this that is going through and we trust us

we this we have I have not given any information, but it just learn on itself that and almost

you know picked up the true function as it should be.
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So, in the next video what I am going to do, we will going to do the hands on and in the hands

on we will implement this thing and we will see that how nicely it can fit unknown

completely unknown function as long as the function is somewhat smooth there is no major

break or anything it will work pretty good. So, I hope you enjoyed this video. So, please

watch the next video which will be hands on of implementation of Gaussian process

regression in with R.

Thank you very much, see you in the next video.


