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Hello all, welcome back to the Predictive Analytics Regression and Classification course. In

lecture 13, in this video, we are going to talk about the Effect of Feature Engineering in

Logistic Regression.

(Refer Slide Time: 00:30)

Here, we are try, we will try to understand how we can conduct feature engineering in logistic

regression.
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So, typical logistic regression model will have a dataset D. So, typical it will have a, if you

think from a sort of excel or data frame kind of thing, you have a y where y is like 1 0s or

something like that and then you have bunch of features, x 1 to x p. So, these are your

features and you have n such rows, 1, 2, 3 up to n rows and you have, so; that means, you

have about n cross p, x columns and bunch of vectors of y 0 1s.

So, that is what I have written. So, the ith row, you have 1 y i and x i transpose. So, the i. So,

now, once you have that, then z i equal to x i transpose beta and once you compute z i, then

you put e to the power z i divided by 1 plus e to the power z i. This is sometimes in statistics;

we call it logit link. In statistics, we call it logit link. In ML, we call it sigmoid function. 

And why we call it sigmoid function? We will know, but we will know that y, ah, but I

personally feel logit function is much more appropriate name because sigmoid function, there



are other functional form which also follow like a sigmoid function. So, sigmoid function

because this behaves like this. Its kind of elongated s, this particular function, but there are

other than this function, there are functions like probit also behaves like elongated function. 

So, probit link can be called sigmoid functions, but in ML, particularly logit link is being

called as sigmoid function which is not necessarily as an unique thing. So, I prefer to call it

logit link. And then once you define p i 1 and p i 0 is effectively 1 minus p i 1. And then for p

i 1, you observe 1 y i, value as 1 with probability p i equal to 1 and 0 with probability p i 0 1 1

minus p i 1. 

So, here beta, this should be beta, beta is p cross 1. So, ok now this is a mathematical

representation. This is mathematical representation of logistic regression.
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Now, the same logistic regression I am going to represent as a in a graphical point of view.

Now, we have x 1, let me use a different color. So, this is x 1, this is x 2 dot dot dot x p. So,

we have x 1, x 2, x p. And then each of their weight, these arrows represents their weight.

And if I multiply them with their weight. So, beta naught, this is 1, this is intercept, this is

intercept.

So, beta naught plus beta 1 x 1 plus dot dot dot beta p x p. Let us call it z. And then we are

putting it into a sigmoid function, z is e to the power z by 1 plus e to the power z. That is my

p, I am getting p. And then with some probability, I am getting observing 1 I am observing 0.

So, that is my graphical representation of the model ok.
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So, now, we will try to understand the sigmoid curve behaviour of the logistic regression law.

So, logistic regression does not have behave like simple linear regression. Instead, it behaves



like a sigmoid curve. So, what we will try to do, we will try to visualize the nature of the

sigmoid curve using some followings simulation study ok.

(Refer Slide Time: 06:16)

So, we consider predictor variable x between minus pi and pi. So, x is a variable which takes

value x ranges value between minus pi and pi. So, now what I am going to do, I am going to

define z, where z is 0.01 plus 0.45 times x plus e, where e is some random number generated

from normal distribution with mean 0 and standard deviation 0.3. Now, we define a response

variable y equal to 1 if z is strictly greater than 0 and y equal to 0 if z is strictly less than 0 ok.

Now, ask yourself, pause the video for 5 minutes, ask yourself is this model, a logit model or

probit model? I hope you tried it and you got the answer. So, it is actually a probit model

because you see e here it follows normal distribution with mean 0 standard deviation 0.3 ok.



So, that means, it follows logistic regression with probit link ok. So, it is logist probit model

ok. So, not logit it is a probit model.
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Now, we pretend that actual response variable z is unobserved, this is very important. In your

real life, we will never see observe z. So, this is my data generation process. So, I am just

simulated some random numbers between from uniform minus pi to pi, then using this model,

I generated z and giving z, I generated y. Now, I will just pretend that I have only y and x and

I will delete all the z values ok. 

So, now, we will pretend as if we never observe z, we never observe z values. The only data

that we have is x and y in D as some data frame right. So, we will just define some data dot

frame x comma y as D ok. So, we model the relationship between x and y now using logistic

regression. So, we will use glm function in the stats package of R.
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So, if you do that, turns out that these purple colors point, these are actual observed y for

different values of x, these are actual observed values. And this red color that you are seeing,

this red color curve, this is actually your estimated p of probability y equal to 1 ok. So, you

can see that this behave this p behaves like a elongated S, that is why its called sigmoid curve.
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So, the non-monotonic relationship with logistic regression, the elongated S type behaviour

also known as sigmoid curve is well understood in the literature. If you want to know more

about the detail about it, then you can see the chapter 4 of Introduction to Statistical Learning

by James, Witten, Tibshirani and Hastie ok. I will recommend this everybody to read this

chapter, this is a beautifully written chapter.
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However, elongated S only models the monotonic relationship between x and y. Here we

discuss how we can model the non-monotonic relation between x and y using logistic

regression.
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So, the we can model the non-monotonic relationship. Now, why before going into the how

non-monotonic? So, I hope you understood why I am calling it monotonic relationship

because as x increases. So, what is the relationship between x and z? The relationship

between x and z, we are considering is straight line right. And what is the relationship

between z and p? z and p has a elongated x and that what we are seeing in x and p. 

So, if you put that, that is this put this putting it into some sort of a you know elongated curve,

but it is continuously monotonic function, it is not a non monotonic. Means, it been like going

up and then coming down. It is always increasing constantly, it is increasing. It is bounded

between 0 and 1 because it is probability, but it is continuously increasing, it is a monotonic

function. 



Now, the relationship between x and p not necessarily has to be monotonic. It can be in real

data; it can be going up and then make them down. So, the elongated curve in the monotonic

relationship. So, if you just use a simple linear logistic regression, it will only model the

monotonic relationship between x and y.

So, now we will discuss how can we model the non-monotonic relationship between x and y.

We can do it by using higher order polynomial. How? So, previously what we were doing?

We were using beta equal to e to the power, say beta naught plus beta 1 x divided by 1 plus e

to the power beta naught plus beta 1 x.

Now, what I am suggesting, why you stop here, you add the higher order polynomial. Here, I

have added quadratic, you can add cubic or polynomial for the 4, 5, whatever you want, you

can put it there in the equation 1. Quadratic equation is being presented to model relationship

between x and z. We can use higher order polynomial model to capture the underlying

relationship between x and z.
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So, the non-monotonic relationship with logistic regression, let us try to capture this

behaviour. Let us assume that relationship between x and z are sinusoidal. So, we consider

the predictor variable between x of x between minus pi and pi. So, we simulate the latent

variable z as z equal to sin x plus error. So, error is still following normal. So, 0 with standard

deviation 0.5, but the relationship between z and x is for sure not linear, its a sinusoidal.
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So, how it is? That is how the relationship between z and x. The latent space has a very

non-linear relationship.
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Now, if you when from z, we simulate the y's and we plot that is how it looks like, that is how

it look like. So, we had some values here, then we got bunch of values here and then we got

lots of values here. So, because now what is either all values of z is being converted into y as

either 0 or 1. that is all and in real life, we do not know what is the 0, now z values. All we

have is the values of y which write as 0 or 1.
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So, we pretend that we do not know the true relationship between x and z, ok. And we simply

fit a logistic regression of simple logit p beta naught plus beta 1 x. So, that is p equal to e to

the power beta naught plus beta 1 x plus 1 plus e to the power beta naught plus beta 1 x ok.
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Now, if you fit that, this is fitting a simple non-monotonic, elongated x curve. Fine monotonic

relationship, its giving you monotonic relationship, but though we know we have quite a few

points here and the underlying relationship is very non-linear.
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So, we thought like, we see simple logistic regression models non-linear, but non-monotonic

relationship between p and x. Even if between x and z has a non-monotonic behaviour like

you know quadratic cubic behaviour sort of sinusoidal behaviour. So, we fit a cubic

relationship between x and z, x and p, x and p ok. And we decided to go for this beta naught

plus beta 1 x plus beta 2 x squared plus beta 3 x cube. 

And hence the final model is this logit p equal to beta naught plus beta 1 x plus beta 2 x

square plus beta. So, final model is logit p equal to beta naught plus beta 1 x plus beta 2 x

square plus beta 3 x cube.
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And when we fit that model, the p is now nicely non-monotonic and capturing the sinusoidal

behaviour between x and y. So, we never used z here, remember that all we have is only x and

y. Just modeling the higher order feature, we put couple of higher order feature x square and x

cube and the model logistic regression able to model the sinusoidal behaviour of relationship

between x and y.
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So, this is, so, ever do not show that we can use feature engineering technique to capture the

non-linear and non-monotonic relationship between x and p or y. The feature engineering

typically helps increasing out of the sample model accuracy. However, we should be careful

about the over fitting because when you put more and more features in your model. So,

naturally you have a chance that you end up over fitting the model ok.
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So, thank you very much, see you in the next video.


