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Welcome back to the Part C of lecture 12. In this video, we are going to start K class

classification.

(Refer Slide Time: 00:25)

To understand the K class classification, we will; we are going to consider iris flower dataset.

Its English flower iris and it has three subspecies. One is iris flower, iris versicolor, second is

setosa and the third is virginica. Now, obviously, its this is the sepal and this is the petal. 



This is the sepal and this is the petal now, of the flower. So, what they have done, they have;

in this; in this dataset they have taken the petal width and petal length. And then similarly

sepal width and sepal length, so these are the value that are being collected for different

flowers.
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And based on these flowers, we have to say whether its like you know; its just how the

dataset looks like the for a particular flower, say sepal length is 5.1, sepal width is 3.5 and

based on the its suppose, setosa and then we call it group 1, it belongs to group 1, we label it

as a group 1.



Similarly, there is another which is a sepal length of 7, sepal width of 7, 3.2, you have petal

length, you have a petal width, you have a petal length, petal width and that belongs to

versicolor and we call it where it belongs to group 2. So, that is how its been collected.
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Now, that is how the data looks like. So, now, the our job is to classify these data, I mean,

create a classification technique and for a new data point, say this is a new data point, ok.
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I am I do not know, suppose this is a new data point, would you like to classify it as a setosa

or is it going to be versicolor or is it going to be a virginica. So, for this new point, test point

and a flower which got these values, sepal length and sepal width, what kind of classification,

which class you would put it.
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So, suppose what we can do? Now, given the that; you know given the features of the species

setosa, I can create a sub set of the data. Similarly, given the feature of the subspecies

versicolor, I can just create a sub set of species of the data. And similarly, I can create a sub

set of the data for where all the features, all the species are virginica.

So, we can assume that X k follows joint probability distribution with some pdf probability

density function f k x ok. Now, given a test point, we want to classify, then new flower into

one of the three species ok.
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So, given a test point, which species it belongs to.
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So, now, you can imagine, given the species I can try to think of these points, blue points,

belongs to have their own probability distributions, which is setosa. The brown points, all the

brown points which are virginica have their own probability distribution and the red points,

whichever versicolor, it has its own distribution.
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And so, I can think of these distribution, classify these distributions and based on these

distributions, I can try to make a analysis we call it discriminant analysis. Now, suppose f k x

is the class conditional density of x in class G equal to k.
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So, that means, if you go here and see that this a particular distribution, we will call it f 1 x.

This is another distribution, we will call it f 2 x and this is another distribution, the red one.

So, let me use a different color here. So, it is f 1 x is the distribution of all the setosa and then

f 2 x is all conditional; class conditional distribution for versicolor ok, this is and this is for

virginica ok, virginica ok.

Now, once you get this class conditional density, you suppose pi k be the prior probability

distribution of class k and sum of the pi k is 1. Then you just use base theorem and you can

compute probability of g equal to k given x. For new data point, I only know the x, I do not

know which class it belongs. I am just given the data point; can I compute the probability of

that the point belongs to class k.



That is just apply the base theorem f k x times pi k divided by sum of the f k; f l x pi l. In

terms of ability to classify having f k x is almost equivalent having quantity probability of G

equal to k given x equal to x.
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So, when we classify so this point, if we want to classify when we plug it in, what we found

that the probability the class conditional probability or base probability is 0.861 for setosa,

0.029 for versicolor and 0.110 for virginica. So, this point belongs to virginica with

probability 0.110, it belongs to versicolor with probability 0.029 and it belongs to setosa with

probability 0.861. So, most likely this point is setosa.
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So, many techniques are there to model f k x. Now, question is how do I model f k x. There

are many techniques are there to model f k x. Linear discriminant linear and quadratic

discriminant analysis uses Gaussian densities. One can use finite mixture models, one can use

you know nonparametric density estimation models.

So, lot of models we can use, but in this course, we will just use assume Gaussian densities

and we will only stay keep ourselves within the linear and quadratic discriminant analysis.
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So, you can try some advanced modeling, but for this we; first we will check linear

discriminant analysis.
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So, if you model class density as multivariate Gaussian and then for each class, if you assume

this particular thing like you know for each class covariance matrix is same, this basically

homoscedasticity assumption. Then the resulting solution will be linear discriminant analysis

ok.
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Now, so we want to suppose compare class 2 classes k and l. Let us look at the ratios, if you

just look at the ratios and you can see that this pi k and pi l is already known to us and mu k

mu l sigma inverse these are all known to us. So, these entire first two term is completely sort

of a parameter driven. So, you can write it as sort of a this part is alpha and then x transpose

sigma inverse this mu k minus mu l is sort of a x transpose beta kind of thing.

So, this is my beta so, you got; so, this ratio you are writing it as a alpha plus x transpose beta.

So, this is why its this methodology is called linear discriminant analysis.
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Now, if you do this linear discriminant analysis will give you a decision boundary between

classes k and l and this decision boundaries are turns out to be linear, we will see about it in

few slides. And from the above linear discriminant analysis you can come up with a decision

boundary like this and base decision rule is just basically for each argmax of the delta k x. So,

this is the best decision boundary.
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So, linear; for this particular linear discriminant analysis, we came up with a sort of this was

the, so anything in this region will be effectively on the virginica linear discriminant analysis

was giving us virginica, this was versicolor and this is setosa ok.
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So, that is linear discriminant analysis. In practice we do not know the parameters of the

Gaussian distribution. So, you need to estimate from the training data. So, how you do that?

Pi k you can just take the frequency like proportion of the data points that belongs to class k

mu k is simply sample mean and covariance matrix is simple sample covariance matrix.

These estimates are all maximum likelihood estimates. So, you can use it.
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So, quadratic discriminant analysis is when if you assume sigma k are not equal to sigma and

for each class you are going to compute the covariance matrix. At that time resulting solution

will be QDA or quadratic discriminant analysis and decision boundary is slightly

complicated, but it is not impossible.
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Now, what happens you can handle it? I have taken this figure from Hastie and Tibshiranis

book James, Witten, Hastie and Tibshiranis book. So, this how; this is how the linear

discriminant analysis looks like, and this is how the quadratic discriminant analysis looks

like.

So, they are trying to model three class problem like, the one we are doing with the Iris data

set and they showed that how a discriminant analysis will behave and how linear discriminant

analysis will behave. The decision boundary is like quadratic in for QDA and decision

boundary is a linear in LDA. So.

Thank you very much, see you in the next video with hands on.




