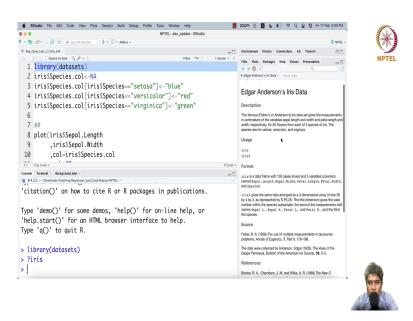

Predictive Analytics - Regression and Classification Prof. Sourish Das Department of Mathematics Chennai Mathematical Institute


Lecture - 41 Hands on with R with Iris dataset

Welcome to the part b of lecture 12. In this video, we are going to do some Hands on. So, in this hands on we are going to load the dataset library which has the; which has the iris dataset.

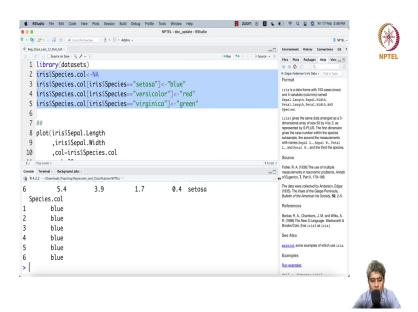
(Refer Slide Time: 00:23)

(Refer Slide Time: 00:32)

So, if you go to the load the, you write iris. So, Edgar Anderson's iris datasets, it is also known as Fisher's iris dataset. So, it has iris is a English flower, which has three subspecies, one is called Setosa, one is called versicolor, and one is called virginica.

(Refer Slide Time: 01:02)

				NPTEL - doc_u	pdate - RStudio	
9 - 98 (🕶 🖂 😭 🖨 🗍 🔺 Com	fleifunction 🔄 🖥 🖶 🔛	• Addins •			3 NPT
	s_Lect_12_Part_b.R ×				-	
	Source on Save Q				⇒Ran 🍽 🖯 👌 🕞 Source +	Files Plots Packages Help Viewer Presentation
	ibrary(datase					(a) (a) (a)
	ris\$Species.c					R: Edgar Anderson's Iris Data + Find in Topic
3 i	ris\$Species.c	ol[iris\$Spec	i es =="setosa"]<-"blue		
4 i	ris\$Species.c	ol[iris\$Spec	ies=="versico	lor"]<-"	red"	iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
5 i	ris\$Species.c	ol[iris\$Spec	ies=="virgini	ca"]<-"q	reen"	and Species.
6			0	- 0		iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as represented by S-PLUS. The first dimension gives the case
7 #	#					number within the species subsample, the second the measurements wi names Sepal L., Sepal W., Petal L., and Petal W., and the third
8 r	lot(iris\$Sepa	l l enath				the species.
9	,iris\$Sep	5				Source
10		\$Species.col				Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics. 7, Part II, 179-188.
	o Leveli :	appectes.cor				
	(p Level) : Ferminal × Background Jobs				R Scri	Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2–5.
	· ~/Downloads/Teaching/Regri		u, ⇔		-	References
hea	d(iris)					Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S
	al.Lenath Sep	al Width Poto	1 Length Pet	al Width	Snacias	Language. Wadsworth & Brooks/Cole. (has iris3 as iris.)
1	5.1	3.5	1.4	0.2		See Also
-		3.0		0.12	500054	matplot some examples of which use iris.
2	4.9		1.4	0.2	setosa	Examples
3	4.7	3.2	1.3	0.2		Bun examples
4	4.6	3.1	1.5	0.2	setosa	dni3 <- dimnames(iris3)
5	5.0	3.6	1.4	0.2	setosa	<pre>ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), mcol =</pre>
6	5.4	3.9	1.7	0.4	setosa	sub(" W.",".Wi
>						<pre>Species = gl(3, 50, labels = sub("S", "s", sub("V" all.equal(ii, iris) # TRUE</pre>

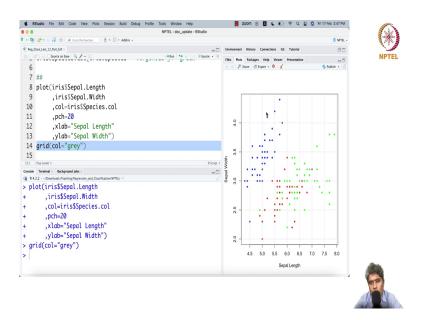

In this dataset, what happens is if you just say, let us say, iris, head iris. So, it has four predictors, sepal length, sepal width, petal length, and petal width. This four based on these four phenotype can you say which species the flower belongs to? Ok. So, what we I have done here, I for different colors setosa, versicolor, and virginica.

(Refer Slide Time: 01:48)

	NPTEL - doc_update - RStudio	1
🗉 🔍 🖀 • 🗄 🗿 🚔 🗛 Constitution 🔤 🖥 • Addes •		🖲 NPTEL 🔹
Reg_Class_Lect_12_Part_b R ×		60
🗇 🗇 🗐 🔄 Source on Save I 🔍 🎢 📲	→Run 🍽 🔿 🕞 Source + 🗷 Files Plots Packages Help Viewer Presentation	-5
<pre>1 library(datasets)</pre>	(* ⇒ ☆) Ø	
<pre>2 iris\$Species.col<-NA</pre>	R: Edgar Anderson's Ms Data - Find in Topic	
<pre>3 iris\$Species.col[iris\$Species=="set</pre>	a"]<-"blue"	
<pre>4 iris\$Species.col[iris\$Species=="ver</pre>	color"]<-"red" iris is a data frame with 150 cases (rows) and 5 variables (colu named Sepal.Length, Sepal.Width, Petal.Length, Petal	
<pre>5 iris\$Species.col[iris\$Species=="vir</pre>	nica"]<-"areen" and Species.	
6 7 ## 8 plot(iris\$Sepal.Length 9 ,iris\$Sepal.Width	1:1:13 per la surve dina rango da 13 domendo da per per la domenda da per	the case nents with the third
<pre>10 ,col=iris\$Species.col</pre>	Fisher, R. A. (1938) The use of multiple measurements in taxonom problems. Annals of Eupenics. 7. Part II. 179–188.	nic
k1 (Top Level) :	R Script : The data were collected by Anderson, Edgar (1935). The irises of	fthe
Console Terminal × Background Jobs ×	Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2–5.	
R 4.2.2 · ~/Downloads/Teaching/Regression_and_Classification/NPTEL/ ···	References	
3 4.7 3.2 1.3	0.2 setoso Becker, R. A., Chambers, J. M. and Wiks, A. R. (1988) The New S	s
4 4.6 3.1 1.5	A 2 sotosa Language. Wadsworth & Brooks-Cole. (has 1r1s3 as 1r1s.)	
5 5.0 3.6 1.4	0.2 setosa See Also	
	astplot some examples or which use iris.	
6 515 att	0.4 setosa Examples	
<pre>> iris\$Species.col<-NA</pre>	Run examples	
<pre>> iris\$Species.col[iris\$Species=="setose")</pre>		
<pre>> iris\$Species.col[iris\$Species=="versigned")</pre>	<pre>lor"]<-"red" ii <- data.frame(matrix)aperm(iris3, c(1,3,2)), dimnames = list(NULL, sd</pre>	
> iris watx]ies.col[iris\$Species=="virginger")	ca"]<-"green" sub("W.	
> head(iris)	<pre>Species = gl(3, 50, labels = sub("S", "s", s all.egosl(ii, iris) # TRUE</pre>	ub("V",
	usarugusa(sa) sasa) r situ	

I have given different color, for different species, I have now had different color. So, now, if you go to head iris.

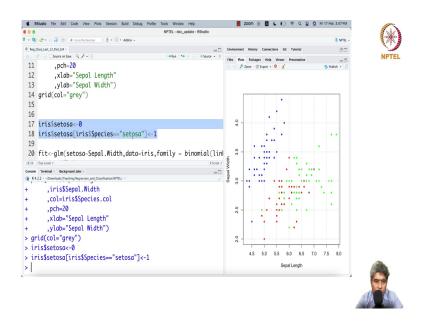
(Refer Slide Time: 01:55)


So, you will see that in along with that, let me just.

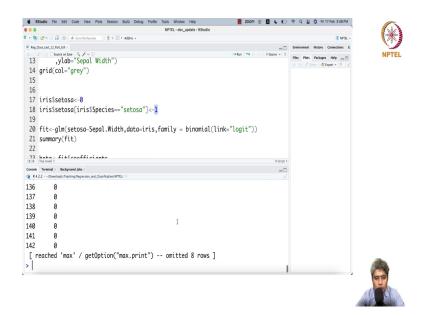
(Refer Slide Time: 01:59)

				NPTEL - doc_u	pdate - RStudio				
• •	🥶 • 🕞 🗐 🖨 🔺 Cara	fle/function 👌 • 🔛	• Addins •				3 NPTEL		
	lass_Lect_12_Part_b.R ×					-0	Environment History Connections Cit		
	🗆 📄 🗆 Source on Save 🔍 ,					- →Run 🍽 🖓 👌 🖓 Source + 🧟	Files Plots Packages Help View		
	library(datase						♦ ♦ ▲ ▲ ▲		
	iris\$Species.c						R: Edgar Anderson's Iris Data • Find in Topic Format		
3	iris\$Species.c	col[iris\$Spec	ies=="setosa"]<-"blue					
4	iris\$Species.c	ol[iris\$Spec	ies=="versico	lor"]<-"	red"		iris is a data frame with 150 cases (rows) and 5 variables (columns) named		
5	iris\$Species.c	ol[iris\$Spec	ies=="viraini	ca"]<- "a	reen"		Sepal.Length, Sepal.Width, Petal.Length, Petal.Width, and		
6			J				Species.		
-	##						iris3 gives the same data arranged as a 3- dimensional array of size 50 by 4 by 3, as		
	plot(iris\$Sepa	llongth					represented by S-PLUS. The first dimension		
-							gives the case number within the species subsample, the second the measurements with names Sepal L., Sepal W., Petal L., and Petal W., and the third the species.		
9	,iris\$Sep								
10	,col=iris	\$Species.col					Source		
6:1	(Top Level) :					R Script =	Fisher, R. A. (1936) The use of multiple		
Console	Terminal × Background Jobs					-0	measurements in taxonomic problems. Annals of Eugenics, 7, Part II, 179–188.		
	2.2 · ~/Downloads/Teaching/Regn ad(iris)	ession_and_Classification/NPTE	ц »				The data were collected by Anderson, Edgar		
	pal.Length Sep	al.Width Peta	al.Length Pet	al.Width	Species Spe	ecies.col	(1935). The inses of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2–5.		
1	5.1	3.5	1.4	0.2	setosa	blue	References		
2	4.9	3.0	1.4	0.2	setosa	blue	Becker, R. A., Chambers, J. M. and Wiks, A.		
3	4.7	3.2	1.3	0.2	setosa	blue	R. (1988) The New S Language. Wadsworth & Brooks/Cole. (has iris3 as iris.)		
4	4.6	3.1	1.5	0.2	setosa	blue	See Also		
5	5.0	3.6	1.4	0.2	setosa	blue	matplot some examples of which use iris.		
6	5.4	3.9	1.7	0.4	setosa	blue	Examples		
>							Bun examples		
							Coluin - Cinta		

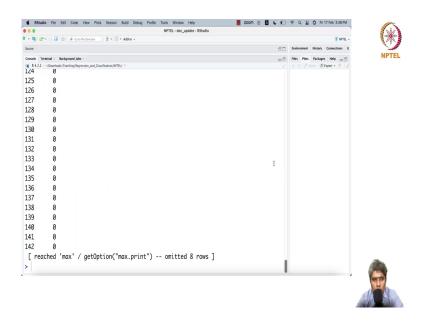
Yeah. So, now, this is the new column, that last column is a new column. For setosa, I had blue, versicolor I have given red, and virginica I given green.


(Refer Slide Time: 02:18)

Now, if I now if you run this piece of code, I just plotting from iris dataset, I am just taking the sepal length and sepal width. I am just extracting it and giving it as a x value and y values. And if you run this plot, then you got this plot, you want, you can give a grid also.


So, you can see these are like bluer setosa, we have given bluer setosa, reds are red points are all versicolor, and the green points are virginica.

(Refer Slide Time: 02:58)


Now, what I have done in that dataset, I have created a one-hot encoding for setosa. If it is setosa, then it will have a 0 or it is 1.

(Refer Slide Time: 03:21)

So, for all it is 0, but whenever it will find setosa, it will get a 1 otherwise, it will be 0. So, now the dataset, let me just let me just show you how the dataset look likes now, iris, ok.

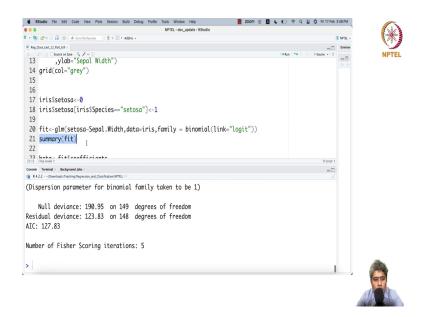
(Refer Slide Time: 03:36)

(Refer Slide Time: 03:40)

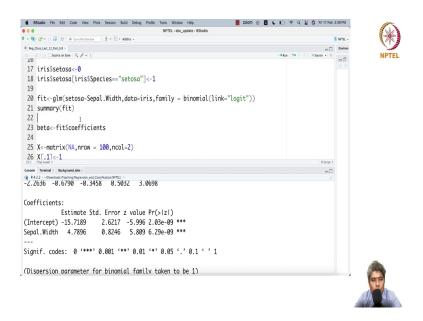
				IPTEL - doc_update -	RStudio					100
	🕞 🚔 🦂 Ga to fiejfu	scton ∄ • ⊞ • Ad	dins •						S NPTEL -	4
Source								80	Environ	
Console Terminal	Background Jobs × wnloads/Teaching/Regression	and Classification/NPTEL/						-8	-0	
> iris										
Sepal	.Length Sepa	al.Width Peta	l.Length Pet	al.Width	Species Spe	cies.col s	etosa			
1	5.1	3.5	1.4	0.2	setosa	blue	1			
2	4.9	3.0	1.4	0.2	setosa	blue	1			
3	4.7	3.2	1.3	0.2	setosa	blue	1			
4	4.6	3.1	1.5	0.2	setosa	blue	1			
5	5.0	3.6	1.4	0.2	setosa	blue	1			
6	5.4	3.9	1.7	0.4	setosa	blue	1 ^I			
7	4.6	3.4	1.4	0.3	setosa	blue	1			
8	5.0	3.4	1.5	0.2	setosa	blue	1			
9	4.4	2.9	1.4	0.2	setosa	blue	1			
10	4.9	3.1	1.5	0.1	setosa	blue	1			
11	5.4	3.7	1.5	0.2	setosa	blue	1			
12	4.8	3.4	1.6	0.2	setosa	blue	1			
13	4.8	3.0	1.4	0.1	setosa	blue	1			
14	4.3	3.0	1.1	0.1	setosa	blue	1			
15	5.8	4.0	1.2	0.2	setosa	blue	1			
16	5.7	4.4	1.5	0.4	setosa	blue	1			
17	5.4	3.9	1.3	0.4	setosa	blue	1			
18	5.1	3.5	1.4	0.3	setosa	blue	1			and the second
19	5.7	3.8	1.7	0.3	setosa	blue	1			100

(Refer Slide Time: 03:42)

••				PTEL - doc_update - RStudio				
	🕞 😭 🚔 🥢 Consiliejfu	sctos ∄ • ⊞ • Ad	dins •					NPTEL -
purce							80	Environ
R 4.2.2 · ~/	al × Background Jobs × Downloads/Teaching/Regression	and Classification/NPTEL/					-8	-0
19	5.1	2.5	3.0	1.1 versicolor	red	0		
.00	5.7	2.8	4.1	1.3 versicolor	red	0		
.00	6.3	3.3	6.0	2.5 virginica		0		
.02	5.8	2.7	5.1	1.9 virginica	green green	0		
.02	7.1	3.0	5.9	2.1 virginica	0	0		
.05	6.3	2.9	5.6	1.8 virginica	green green	0		
.05	6.5	3.0	5.8	2.2 virginica	green	0		
.06	7.6	3.0	6.6	2.1 virginica	green	0		
.00	4.9	2.5	4.5	1.7 virginica	green	0		
.08	7.3	2.9	6.3	1.8 virginica	green	0		
.00	6.7	2.5	5.8	1.8 virginica	green	0		
.10	7.2	3.6	6.1	2.5 virginica	green	0		
.11	6.5	3.2	5.1	2.0 virginica	r green	0		
.12	6.4	2.7	5.3	1.9 virginica	green	0		
13	6.8	3.0	5.5	2.1 virginica	green	0		
.14	5.7	2.5	5.0	2.0 virginica	green	0		
.15	5.8	2.8	5.1	2.4 virginica	green	0		
.16	6.4	3.2	5.3	2.3 virginica	green	0		
.17	6.5	3.0	5.5	1.8 virginica	green	õ		
.18	7.7	3.8	6.7	2.2 virginica	green	0		
19	7 7	2.6	6.9	2.2 virginica	areen	a		
19	, ,	7.6	11 4	, , virainita	in een	VI		

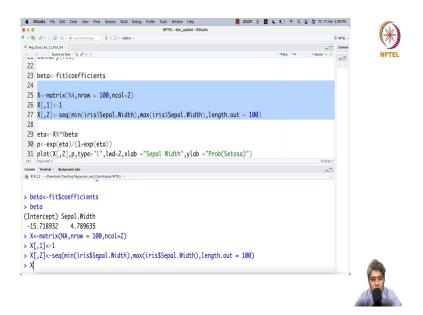

So, let me just, yeah. So, first few values are setosa and then when it is versicolor, it is coded as 0, when it is virginica, this is coded as 0, ok.

(Refer Slide Time: 04:25)

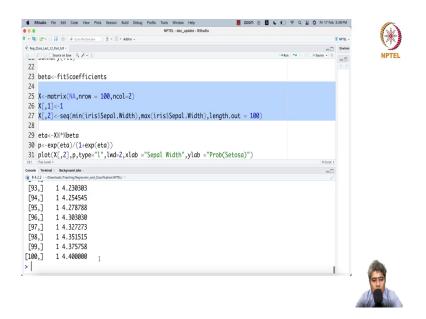

			N	PTEL - doc_upda	te - RStudio				
0 - 3 🐨 - 1	🗄 🗿 🚔 🕐 Constierfu	nction 🕴 🗄 🔹 Ad	dins •						🖲 NPTEL 🔸
• Reg_Class_Lect_	12_Part_b.R ×							-0	Enviror
13	_source on Save						-+Ran - *+ (8 ⊡ Source • 1 ≥	-5
14 grid	(col="grey")								
15									
16									
17 iris	\$setosa<-0								
18 iris	\$setosa⊺iris	Species=="se	etosa"]<-1						
19									
	-alm(setosa~	Sepal.Width.	data=iris.fam	ilv = bi	nomial(link="l	ogit"))			
	ary(fit)					//			
22									
22 hote	fi+tconffi	ciontc							
21:1 (Top Leve Console Termin								R Script :	
	lownloads/Teaching/Regression	_and_Classification/NPTEL/							
137	6.3	3.4	5.6	2.4	virginica	green	0		
138	6.4	3.1	5.5	1.8	virainica	green	0		
139	6.0	3.0	4.8	1.8	virginica	green	0		
140	6.9	3.1	5.4		virginica	green	0		
141	6.7	3.1	5.6		virginica	green	0		
142	6.9	3.1	5.1		virginica	green	0		
[reach			.print")			5	-		
					mial(link="log	i+"))			
	Lin(Secosu Set	/41.1114411,444		y = 01110	inter(trink= tog				
>									

And the column name is setosa. So, that is how I created a one-hot encoding or binary class variable, sometime it is called indicator variable. So, let me run the model, glm, setosa as a function of Sepal Width, data equal to iris, you give family equal to binomial link equal to logit.

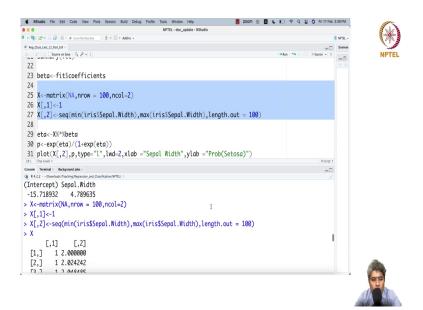
(Refer Slide Time: 04:29)



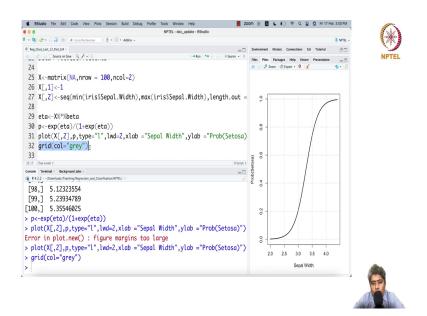
(Refer Slide Time: 04:32)


And if you run summary fit, then this is the fit that you will get.

(Refer Slide Time: 04:35)


If you run the beta, you can from the fit, you can extract the coefficients. Now, in the beta, I have the coefficient. Now, what I am going to do, I am going to calculate eta X matrix with 100 values with which X 2 takes values with minimum value of Sepal Width to maximum value of Sepal Width.

(Refer Slide Time: 05:04)


So, if you just run it. So, minimum is I think 2.2 is the minimum.

(Refer Slide Time: 05:08)

And max is the 4.4. And in between, it just fill up with some values in a equal width. And then I calculate the eta, these are the eta values or z values, latent variable values. And then I calculate the probability.

(Refer Slide Time: 05:29)

And then I plot the X 2 versus Sepal Width versus sorry, but that sepal width versus the probability of setosa. So, if the Sepal Width increases, clearly probability that the flower is setosa increases. So, you can put a grid also in this. So, that is how we, this is that is how we can, you can draw probability of p, you can plot p against some predictor values.

So, I will stop here, but this iris data set shows you that your target variable could be not necessarily has to be binary class. It could be multi class variable. And then in that case, you have to you, you have a multi class classification. Because you have three class here. Remember that you have to do three class, not binary class.

You have a setosa, versicolor and virginica, three sub species are there. When you have more than two class, basically it is a k class problem or multi class problem. The most popular and the old and tested method is linear discriminant analysis.

So, in the next video, we are going to start linear discriminant analysis or Fisher's linear discriminant analysis. So, for now, thank you very much for your attention. See you in the next video.