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Hello all welcome back to the part C of lecture 9. In this part we are going to talk about the

Bootstrap Regression and bootstrap statistics is an algorithmic strategy, which typically resort

to simple random sample with replacement strategy or sometimes without replacement, but

mostly it resort to with replacement strategy. Now, it falls under the broader class of

resampling strategy; that means, you if you have a sample say if you have a sample y.

Which have some values y 1 y 2 dot dot dot y n. What we will do? We will draw this is main

data ok. This you can consider as your main data and this is your main data and what we will

do? We will draw random samples from this data ok. So, we will draw random samples from



this data. Now, this itself is this data itself is a sample from the population. Now, we are

doing random sample this from this sample. 

So, that is why this new sample maybe y 1 star, y 2 star, y n star; this sample will be called

resample. So, resample and this is a broad class of broad class of algorithms are there and this

strategies are called resampling strategy or resampling algorithms. This idea of bootstrap was

first introduced by Brad Efron Professor Brad Efron in 1979 in his Analysis of Statistics

paper. 

The idea though apparently simple, it is a very simple idea, but it revolutionized the statistics

by its ability to replace analytical derivation by brute force computing. So, this was I think

was very timely with respect to an advancement of computer, personal computer etcetera and

this pretty much revolutionized the idea.

(Refer Slide Time: 02:53)



First, I will present the idea of bootstrap statistics with respect to one univariate sample or

univariate variable and then I will describe once you get the idea of bootstrap statistics what I

will do? I will represent I will present the idea of bootstrap statistics in predictive model or

regression context. 

So, suppose Y 1, Y 2, Y n are IIT observation from any probability distribution. So, we are

calling it say F. Now, F could be normal, F could be Gaussian anything. So, F could be any

probability distribution, any probability distribution ok. So, in and T n, T n will be some

function of the theta; T n will be some function of the theta Y 1, Y 2, Y n. 

This is a statistics which estimate the parameter theta ok. So, theta is some parameter of F is

some parameter of F, parameter of F, F is the probability distribution completely unknown

and what you are using? You are using T n, the sampling which is a function of the sample. It

tries to estimate, T n tries to estimate the theta. 

Now, as usual the sampling distribution of T n will depend on F sampling distribution will

depend on the population distribution F is the population distribution, F is the population

distribution. So, the bootstrap idea is simple in simplest form is to estimate; so, F is unknown

the population distribution is unknown. 

So, what we will do? We will estimate the unknown population distribution by the empirical

probability distribution. What is empirical probability distribution? Very simple; empirical

probability distribution only x defined as something like this; 1 by n summation i equal to 1 to

n indicator function Xi less than equal to small x ok. So, what is indicator function?

Indicator function if condition A is satisfied then I will call 1 or 0 if A is true 0 otherwise. So,

that is how it is being defined. It is a simple function you can define it; it is very easy that just

like you know you can write a for loop and define the function in any program it just like 3

lines of code. 



So, the empirical CDF is and here is the big result. The big result is tells you the theoretical

result that tells you that empirical CDF of F n CDF that you know this function is a

non-parametric maximum MLE estimate of the CDF unknown CDF.

So, if you have a unknown probability distribution the best case that about that unknown

distribution you can make is through this particular distribution. Empirical CDF F n x 1 by n

summation Xi indicator function summation Xi less than equal to small x. This indicator this

empirical CDF you can code it in like you know single pretty much you know in 3 to 4 lines

that is it 3 4 lines of Python code or R code.

(Refer Slide Time: 07:42)

So, the bootstrap pin based on this empirical CDF is called non-parametric bootstrap. Now,

bootstrap statistics is suppose, y 1, Y 2, Y n are iid observations with cdf F and T n is T n, Y

1, Y 2, Y n is a statistics with estimates the parameter theta ok. So, that since the empirical



CDF is the non parameter non-parametric MLE of CDF. Now, what we can do? We can draw

sample from Fn x. This empirical CDF we can we know how to draw sample from empirical

CDF.
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This is simply now turns out the drawing empirical from empirical CDF is same as drawing

sample iid samples from your data Y 1, Y 2, Y n that is it. So, that is why the resampling

comes in. So, you draw sample from if you draw resample that is if you resample from Y 1, Y

2, Y n. 

Suppose that comes Y 1 star, Y 2 star, dot dot dot sorry for that, let me just write it carefully;

Y 2 star dot dot dot Y n star. Suppose this is the resample data from Y 1, Y 2, Y n. Now,

these resamples are basically same as drawing sample from empirical CDF which is

maximum likelihood estimate for unknown probability distributions. And hence we can draw



as many times we can repeat this resampling as many times as we want. So, that is the main

idea of bootstrap statistics.
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So, let me explain you the bootstrap framework now. What is the framework? So, you have

these you are starting with this data set that this is the data set that you have and you are

assuming these are iid random samples from a unknown distribution F of x or F of y some

unknown distribution F completely unknown. You have no idea it could be normal comma

normal you have no idea.

 Now, you can also do you can estimate the T n with some method using some function you

can estimate the T n which is a statistic for estimating parameter theta. Estimation is not a

issue. What is in problem is you do not know what is F. So, you do not know what is the

sampling distribution of T n. 



So, you do not know what is the variance of T n is unknown variance of T n is unknown.

Confidence interval of T n is unknown to you. So, you cannot do you cannot compute the

margin of error you cannot do any statistical inference. So, what is the approach? Then you

resample Y nb star from Y n from here from this data set from this data set you just from this

data set you just resample. 

These are your resamples and you resample many many many many times as many times as

possible. So, this capital B is you decide, it could be 1000 times, it could be 10,000 times, it

could be 100,000 times, it could be 1 million times. You decide how many times you

depending on your value for computational ability you decide.
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Once you compute, once you resample once you re sample this Y nb for this Y nb you can

calculate again the statistics T nb. So, for each resample b we can compute this T nb star and



once I get all these T nb stars. So, why now I have this resample estimate of T n1, T n2 star T

n3 star all these estimates T nB star. 

Now, based on these data I can have a sampling estimates of the sampling distributions. Some

I can draw the histogram ok. I can draw the histogram and I can get a sense of what is the how

the histogram looks like ok.
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And based on this histogram I can calculate what is the or these values we can calculate what

is the variance of T n star T nB star and what is the confidence interval of T nB stars. So,

remember that we do not what we do not do is variance of T n and confidence interval of T n,

but using T nB star I can calculate variance of T nB star and confidence interval of T nB star.
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Now, so let me repeat the bootstrap framework again. So, from the main data we resample the

data and for each resample we compute the statistics. And based on statistics, so they

basically T n1 star, T n2 star for each resamples we compute T n capital B star, capital B you

decide user decide it could be 1000, 10,000 whatever. Now, based on B's computation you

can compute take the average of these guys. You can calculate the variance of these guys, you

can calculate the confidence interval of these guys.
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Now, from you can also define empirical distribution G B this guy is scaled G B. So, all these

things you can do. Now due to strong law of large number as capital B goes to infinity;

remember, the capital B is user different. So, you can make it as much large as possible ok.
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One can show T n B bar converges to T n almost surely. The variance of T n B converges to

variance of T n almost surely. Confidence of confidence interval converges to confidence

interval of like resampled T n B is converges to confidence interval almost surely. And

sampling distribution of bootstrap sampling distribution converges to very F of T n. 

Now, what is happening? What we do not know? Because F is unknown because the

population distribution is unknown, F is unknown true population distribution is unknown.

So, because of that F T n is unknown. Because F T is unknown because F T is unknown

variance of T n is unknown because if variance of T n is unknown you cannot compute the

confidence interval of T n. So, that is the main problem that we are facing here. 



But what bootstrap statistics is saying that you do not have to worry all you have to ensure

you have enough computational capacity, push the B to infinity and variance of T n we will

converge to variance of T, variance of bootstrap T n will converge to the variance of T n. 

So, that means, basically variance of bootstrap T n will be same as variance of T n. Similarly,

confidence interval the bootstrap, confidence interval will be same as bootstrap actual

confidence interval of the T n. So, this is the strong strength of the work.
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Now, I am this is the idea of the bootstrap statistics. Now, I am going to explain you bootstrap

statistics in context of regression. So, now we are going to talk about bootstrap regression.

So, let us consider the model y n, X n x beta plus epsilon. Expectation of epsilon is 0,

variance of epsilon in sigma square I n. 



So, homoscedasticity is still I am holding. But what is what I am now giving up is normality.

So, most of the time what we are seeing that at least in the capital asset pricing model what

we have found that homoscedasticity was ok even the randomness was ok.

But what was not holding good was residual was definitely not normal. Since the residual was

not normal. So, now what we are seeing what we are doing we are saying that ok residuals are

coming from iid distribution, but we do not know what is the distribution. So, we are seeing f

is unknown CDF. Since F is unknown CDF, we cannot do any inference on beta. 

So, we can estimate the OLS estimator. OLS estimator is all you do is X transpose X inverse

X transpose y that not a big deal. You can even calculate variance of beta n hat sigma square

X transpose X inverse y. But you cannot do the confidence interval. You cannot calculate the

confidence interval. So, that is where we are getting stuck. 

So, what we can do is we can look into the residual, what is residual? Residuals are epsilon

equal to y minus X beta n hat. We can either equal to this and here or error equal to e i equal

to y i minus x i transpose. It should be not epsilon, it should be e i. Because it is observed we

are using X beta n hat here.
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Now, what we can. So, we can have these error observed error. Now, suppose F n is the

empirical CDF of these error ok small e. So, now what we are saying that alright these e i is e

star e b star follow iid F n then e b star is resampled from e using SRS with SRSWR where b

equal to 1 to B, B capital B could be anything any big number 10,000 or any 100,000 maybe

whatever. 

Now, you calculate all you have to do just you know what is X beta hat X beta n hat just add

epsilon e b star. Then you get a new response y b star. And once you get the y b star all you

have to do you get estimate the resampled coefficient you can estimate as X transpose X

inverse X transpose y b star with the new response; new bootstrap response.

But turns out you can write it as beta n hat which you already know plus X transpose X

inverse X transpose is e b star ok. Now, X transpose X inverse X transpose you already know



right. So, e b star all you have to do is multiply and that will give you the beta n star hat. And

one can show that expected value of beta n hat star bootstrap is beta n hat. One can show that

it is not a very difficult thing to show. So, what is my bootstrap estimate? Bootstrap estimate

is simply you take the average of all these B sample estimates and calculate the variance of all

these resampled estimates ok.
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So, this is my bootstrap estimates. Now, this is and based on these bootstrap estimate and

bootstrap variance you can do the simple covariate statistical inference. Now, there is no

problem because you are not even making any assumptions. Now, there is a another approach

this method was called residual bootstrap regression ok. 

This method was called residual bootstrap regression because you are doing it resampling the

residuals. You are resampling the residuals ok.
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Now, suppose, but you are still you are assuming that your homoscedasticity holds good.

Homoscedasticity is ok. Your data still preserve the homoscedasticity, but we have seen

previously a cases where homoscedasticity even not working. Now, there were cases where

we have seen there were studies where we have seen that homoscedasticity was not working. 

In that case, you cannot use residual bootstrap regression. Because residual bootstrap

regression still assume that your data is has homoscedasticity. But if the homoscedasticity

does not work then you better go for heterosceda paired bootstrap model. In the paired

bootstrap model what you do is very simple.

So, you are assuming y same model y equal to X beta plus epsilon, but now you are assuming

variance of epsilon could be any sigma. It could be any sigma and y i x i star are following F

some unknown CDF. Now, from the D b from the data size you just draw resample the y i



star x i star as a paired as a pair you resample and you resample many many many many times

and do it for each resample you have to calculate these OLS estimates. 

Remember that in this case what will happen is the OLS estimates are not necessarily you

have to calculate this inverse all the time. In the residual in each the sample you have to

calculate this inverse, but in residual bootstrap you do not have to calculate this inverse

because, you do it once and you are done all you have to do you have to just draw the residual

sample and add this to the residual sample that is it ok. 

So, in this case, but you have to do this and then the simple bootstrap estimate and confidence

estimates and variance and confidence interval can be done in the regular way. So, if the

residuals are heteroscedastic then paired bootstrap is still consistent estimated and you better

use paired bootstrap and try to avoid the residual bootstrap. However, in case of

heteroscedastic residual the residual bootstrap is not a consistent estimator.
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So, be careful about this. So, here is some example that what we found that in the OLS

estimate with the you know simple z t value based regression analysis which assumes the

residuals follow normal distribution in paired bootstrap case. What we found is that the

estimates bootstrap estimates is actually converging to the OLS estimates. 

So, in that way estimates is not a problem and almost close to the both alpha and beta very

close to the OLS estimates. Standard error can also be somewhat similar, but little less in case

in this case. However, and we can compute the confidence interval. Perhaps this is the correct

confidence interval given for the OLS estimates given; that we are assuming that the original

distribution could be anything the residual distribution could be anything. 



Whereas this was assuming normal and we found that the normality is not valid assumptions

and in the paired bootstrap you do not even need the assumption of the homoscedasticity.
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So, this is an interesting thing. So, here is the histogram of the paired bootstrap regression;

the sampling you can see the you can say this is the bootstrap sampling distribution. Bootstrap

sampling distribution for alpha and beta ok. And we can see that 0 is somewhere here.

So, this is pretty much including the 0 the distribution and we can see that 1 is somewhere

here. So, beta definitely concluding including 1 whereas, and alpha distribution including 0.

So, it is fairly priced and the confidence interval for beta says that most likely it is as much

risky as overall market.
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Here is we found the residual bootstrap regression also. What we found that residual

bootstrap alpha is pretty much same, even the confidence interval also pretty much similar

and paired bootstrap because one of the reason is both we found that the in CAPM when we

studied this that homoscedasticity was ok assumption. So, naturally residual bootstrap will be

fine. So, naturally paired bootstrap and residual bootstrap tend to agree on each other ok.
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So, here is the residual bootstrap regression the similar kind of distribution we are finding

here. Here is the here is another additional advantage of bootstrap regression technique. So, in

OLS method if you just use OLS method with the normality assumption on the residual the R

squared turns out to be 0.345 ok. 

Now, because you have bootstrap samples in each bootstrap sample you can calculate the R

squared and so you can find a confidence interval for R squared which regular of the shelf

you know regression analysis cannot produce. So, of the shelf regression analysis cannot

produce the R regular R squared. The confidence interval for regular R squared, but bootstrap

regression can give you a confidence interval for R squared ok. So, this is an advantage of

bootstrap regression idea.
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So, the idea of bootstrap statistics or resampling technique can be found in idea of random

forest, ensemble model, bagging. So, in the machine learning technique bootstrap statistics is

almost everywhere in many many techniques are being kind of you know inspired by the

bootstrap statistics. Random forest was I think around 2002 or 2003 was developed ensemble

model was also in that time bagging followed by bagging.
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So, with that I will stop here, thank you very much see you in the next video with hands on.

Thank you, bye.


