Predictive Analytics - Regression and Classification
Prof. Sourish Das
Department of Mathematics
Chennai Mathematical Institute

Lecture - 25
Hands-on with Python Part -3

Hello guys, welcome back to hands on for lecture 7, in this hands on we are going to do some

regression analysis using Python.

(Refer Slide Time: 00:33)

Kooknans @ @ @ @ Dnuchrcens. EICON B3 SoshsBookuark @ Fronce Researcr.. M omal § Naps (B News
Fie Edt Viev Iset Cel Kemel Wdgets Help Not Tusted Python 3 (pykeme) O
B+ xAB 2% PRn B C MW Coe =l
In []: import numpy as mp

import pandas as pd
import matplotlib.pyplot as plot
from scipy import stats

from sklearn import linear_model
fron sklearn.metrics import r2_score

from statsmodels.compat import lzip

import statstiodels.api as sm

import statsmodels.stats.api as sns

import statsmodels.formula.api s smf

from statsmodals.sandbox. regression.predstd import wls prediction std

np. random, seed (9876769)

Read the csv file

In []: data = pd.read csv('ntcars.csv', sep=",")
data. shape

In []: data.head()

So, let me start my Jupyter Notebook ok; so, in this we are going to use the mtcars dataset and
here is the bunch of packages that I have called you know here I have bunch of packages

numpy, pandas, matplot, library, scipy from sklearn, we imported linear models; from

sklearns matrics, we calculated 12 score. Then some other models from statmodels stats api.

So, all these things we have computed, let me run it has no problem.

(Refer Slide Time: 01:30)

* Bookmarls @ @ @ @ DonMChorce ns. B CONA 23 Sourishs Bookark @ Firance Reseorch. M Gmail @ Mops) News B Tronsite
Fle Edt View Iset Cel Kemel Wdgets Help NotTrsted | Python 3 (ykeme)) O
B+ x@ B 4¢ PRn B CH Coe =l NPTEL

In (2]¢ data = pd.read csv('mtcars.csv', seps",")
data. shape

Out[2]: (32, 11)

In (3]: data.head()

out[3):
2 oyl disp hp drat wt csec vs am gear

o X 6 1600 110 300 2620 1846 0 1
1 210 6 1600 110 390 2875 17.02

carb

4

4

1

3 214 6 2580 110 308 3215 19.44 1
2

01
2 28 41080 9 385 2320 18 1 1
10
4 187 8 5600 175 315 340 7.2 0 0

In []: plot.scatter(data['wt'|, data['mpg’|)
plot.xlabel | 'Weight', fontsize=18)
plot.ylabel('Miles per gallon', fontsize=16)

So, next is read the mtcars dataset, we created and it has 32 rows, 11 column as expected and
head. So, it has first column is miles per gallon, second column is cylinder, third column is
displacement, fourth column is horsepower, rears ratio, weight gsec, v shape or knot.

automatic or manual, how many gears it has and carburettor.

(Refer Slide Time: 02:01)

hooonats @ @ @ @ OnuCcons. B OONK EJ SourishsBoobark @ Fiance Rasearcr.. M omail § Naps [News By Tramsiote
Fie Edit View Iset Cel Kemel Wadgets Help NotTusted | Python 3 (pykeme) O
B+ x& B % PRn B C MW Makdown A

3 214 6 2580 110 308 3215 1944 1 0 3 1

4 187 8 3600 175 315 3440 1702 0 0 3 2

In [4]: plot.scatter(data['wt'|, data['mpg'])
plot.xlabel 'eight', fontsize=18)
plot.ylabel('Miles per gallon', fontsize=lf)

Out[4]): Text(0, 0.5, 'Miles per gallon')

B
.
.
2]
c
2 .
T .
83 .
o . '
& 0y ®
V)D . , b
3 .
S ‘e .
» .
15 20 25 30 35 40 50 55
Weight

So, the first we are going to plot weight versus miles per gallon and as expected on the x axis
we put a weight and a on the y axis we put gallon miles per gallon. And it there is a negative
relationship what we are seeing is as the weight of the car increases efficiency of the car

drops. So, first we are going to fit a linear model with weight using a sklearn.

(Refer Slide Time: 02:30)

Moomi § vops (B News B Tansite

Koknas @ @ @ @ Onuchrcens. EJCON B3 SoshsBookkark @ France Resarc

Fie Edt Viev Iset Cel Kemel Wdgets Help NotTusted | Python 3 (pykeme) O

B+ x®HB 4% PRn B C W Markiown ol
Fit linear model with weight using sklearn:
mpg = a + b weight + error

y=a+Dbx-+emor

+ x = data[["wt"]]
y = data[["mpg |y

In = linear model.LinearRegression()

fit ml = Im. fit(X=x,y=y)

In []: intercept = fit ml.intercept_
print('a = ', intercept)

beta = fit_nl.coef_
print('b = ', beta)

In []: y_hat = intercept + np.dot(x,keta)

a=37.285andb=-5.344

So, first; so, we are going to fit miles per gallon as a function of a plus b times weight plus
error. So, X is in the weight and y as the miles per gallon and from the linear model we are
calling the linear regression module. Defining it as a Im and then we are going to fit Im fit and

x we have to give this x and for all y we have to give this y, and that will be fitted as a first

model ok.

(Refer Slide Time: 03:18)

* Bokmais @ @ @ @ DnuCharcens. B3 CONA EJ SourshisBonMark @ Firance Researsn.. M Gmal @ Naps (B News By Tansite
Fie Edit View Iset Cel Kemel Wadgets Help Not Trsted Python 3 (ipykernel) O
B+ x®B B 2% PRn B C MW Markdown =

a= [37.28512617)
b= [[-5.34447157])

In [7]: y_hat = intercept + np.dot(x,beta)

a=37.285and L 3344

In [): def abline(slope, intercept):

“"“plot a line from slope and intercept”'"

axes = plot.gca()

x_vels = np.array(axes.get_xlin())

y_vals = intercept + slope * x_vals

plot.plot(x_vals, y vals, '--')
plot.scatter (data[‘wt'|, data['npg’])
plot.xlabel('Weight', fontsize=18)
plot.ylabel('Miles per gallon', fontsize=16)
abline (slope=-5.344, intercept=37.285)

Model evaluation

In []: R2 = r2_score(y,y_hat)
print (round(R2,3))

So, it has done it has done and let from the fit m1, here it is; we are extracting the intercept
and calling it intercept and the coefficient beta and we take it as b equal to a equal to b equal
to. So, we got a equal to 37.2 a and b equal to negative 5.344 and we are going to calculate y

hat equal to intercept, plus in dot operation we are going to do X into beta.

So, but it is a dot operation from; so, from numpai, we are going to call the dot operation. So,
we ran it we took a equal to 37.285 and b equal to negative 5.344 from here. And then we are
going to draw a straight line abline sometimes called through the plots. So, this we have
written this small piece of function which, if you go give the slope value and the intercept

value, it will plot the line from slope and intercept over the scatter plot.

(Refer Slide Time: 04:39)

Soooknas @ @ @ @ DnuCrarcens. E3CONA B3 SourishisBookark @ Fiance Researcn.. M Gmal 9 Naps [} News [Transite e
A
Fie Edt Viev Iset Cel Kemel Wdgets Help NotTusted | Python 3 (pykeme) O _5
S
B+ x®B B 2% PR B CH Mrkdon v B li NPTEL
5
.
.
2] .

o

Miles per gallon
o

Model evaluation \

In []t R2 = r2_score(y,y_hat)
print (round(R2,3))

In []: plot.scatter(y,y hat)
plot.xlabel('MPG', fontsize=18)
plot.ylabel['MPG Predicted', fontsize=16)

So, we run this; so, over the scatter plot we draw a straight line, and this is the best fitted OLS

line.

(Refer Slide Time: 04:50)

* Bokmais @ @ @ @ DnuiCharcens. £ CONA £ Soursh'sBookMark @ Firance Researeh

Fie Edt Viev Iset Cel Kemel Wdgets Help Not Tusted Python 3 (pykeme) O

B+ x®H B 2% PR B C MW Markdown ol

0.753

In [10]: plot.scatter (y,y hat)
plot.xlebel('MPG', fontsizes18)
plot.ylabel('MPG Predicted', fontsize=16)
0Out[10): Text(0, 0.5, 'MPG Predicted')

£

o

MPG Predicted
o
>
.
H

Now, we are fitting a model evaluation; now, we are fitting r square, r square is 0.753. And
then from the we have y and y hat; we plot y and y hat, y is the miles per original miles per
gallon and y hat is the predicted miles per gallon or estimated miles per gallon. So, we can
see that they are positively correlated; that means, the cars which has lower efficiency it is
predicted as lower. But definitely there are some variability, more time it will be better the

model prediction is we can say.

(Refer Slide Time: 05:36)

hookmas @ @ @ @ OnuChrcens. EJCONA 33 SourshsBookark @ France Reseoren.. M Gmail § Nops 8 News B Transite

Fie Edit View Iset Cel Kemel Wadgets Help NotTusted | Python 3 (pykeme) O
B+ x®B B % PRn B C MW Makdown ol
© 0
g
ny,
.
0 5 2 5 F
MPG

‘ Fit linear model with weight using statmodels:

In []: model = sn.OLS(y, *)

results = model.{

print (results. summacy())

Fit linear model with wt and hp using sklearn:
In []: x = data[["wt", "hp"]]

y = data[["mpg"]]
In []: fit m2 = Im fit(X=x,y=y)

N intercept = fit_n2.intercept

So, now fit linear model using weight using stat model; so, that was we fit this model using;
so, when we fit this model in the above yeah, here this was done using sk learn. Now, we are

going to fit the same model using stat models; so, sm OLS, sm dot OLS.

(Refer Slide Time: 06:10)

Kobokmais @ @ O @ onuCurcons. B COV 3 S Bookvare @ Francoasearcn.. M Gmal @ Naps (8 News By Tt FON
&

a‘%,

Fio Edt View Insat Cel Kemdl Wdgets Holp NotTusted | | Python 3 (pykenel) O LY E

E

+ ¥ BB A% PR B C P Makdown v B L NPTEL

Fit linear model with weight using statmodels:

In [11]: model = sn.OLS(y,)
results = model.fit()
print(results.summary())

OL§ Regression Results

Dep. Variable: mpg R-squared (uncentered): 0.720
Model: 0.5 Adi. R-squarec (uncentered): 0,711
Method: Least Squares F-statistic: 79.58
Dat Mon, 30 Jan 2023 Frob (F-statistic): 4.55e-10

i 16:17:21 Log-Likelihood: -122.40

Yo. Observations: 32 AIc: 246.8
Df Residuals: 31 BIC: 248.3
Df Model: 1
Covariance Type: nonrobust

coef std err Iy P>t| [0.025 0.975]
Wt 5.2916 0.593 8.921 0.000 4.082 6.501
Omnibus: 0.255 Durbin-Watson: 0.833
Prob(omnibus): 0.830 Jarque-Bera (JB): 0.317
Skew: 0.189 Prob(JB): 0.854

Kurtosis: 2,692 Cond. No. 1.00

(Refer Slide Time: 06:20)

hoowis @ @ @ @ DniCramcens, B3 CONG B3 SourishsBookvrk @ Fiance Research.. M omail § Naps (B News By Tonste S
Sk
H
Flo Edt Vew Isat Col Keme Wdgets Help NotTnsted | Python 3 (pykere) O AN S
F
NPTEL

B+ x®B 4% PRin B C MW Code B

Notes:
[1] R? is computed withoat certering (uncentered) since the model does not contain a constan

t.
(2] Standard Errcrs assume that the covariance matrix of the errcrs is correctly specified.

Fit linear model with wt and hp using sklearn:

In [12]: x = data[["wt", "hp"]]
y = data[["mpg"]]

In []: fit_m2 = lm.fit(X=x,y=y)

intercept = £it 1 ntercept_

Prepare a new data for prototype car with

wi=3hp=120

In [): x_new = np.array([(3, 120]])
beta = fit m2.coef_
beta. shape
beta = np, transpose (beta)

We if we run that, it gives print out more like a you know like a r kind of print out. Now,
along with weight we want to put the horsepower; so, in the x we put along with weight we

put the horsepower and we fit the model. Now, we are preparing a new data with a new

prototype car with weight equal to 3 and horsepower equal to 120.

(Refer Slide Time: 06:47)

*ookmas @ @ @ @ OnuChrcens. I CON 33 Souriss Bookark @ France Rseoren.. M Gmail § Nops (8 News B Transite

File Edit

B+ x®B 4% PRn B C M Code

In (14]:

out[14):

In[]:

Inf):

View Inset Cell Kemel Widgets Help Not Tusted
= M

Prepare a new data for prototype car with

wt=3hp=120

x_new = np.array([[3, 120]])

beta = fit_n2.coef_

beta. shape

beta = np, transpose (beta)

beta. shape

(2 1)

pred = intercept + np.dot(x_new,beta)
pred

[y
Calculate Total Sum of Squares of Error

y_hat = intercept + np.dot(x,beta)

error_sqr = np.square(y-y_hat)

Calculate Total Sum of Squares of Error

| Python 3 (pykerne) O

So, in that we run; so, we got the alpha then beta; now, beta we have 2 coefficients; so, that is

why it is 2 cross 1.

(Refer Slide Time: 07:00)

* Bokmais @ @ @ @ DnuCharcens. £ CONA B3 SourshisBonMark @ Firance Researsn.. M Gmal @ Naps (B News Dy Tansite

Fie Edit View Iset Cel Kemel Wadgets Help Not Trsted Python 3 (ipykernel) O
B+ x®H B % PR B C MW Mrkdown =
pred

Out[15]: array([|21.78102425]])

Calculate Total Sum of Squares of Error

In [16]: y_hat = intercept + np.dot(x,keta)

error_sgr = n- ouare(y-y_hat)

Calculate Total Sum of Squares of Error

i 155 = np.sun(error_sqr|

1 = x.shape[0]
p = x.shape(1]

Mean sum of squares

In []: MSS = T88/(n-p-1)

Now, predicted values will be for that for a new prototype car which has 3 weights. And how
weight equal to 3 meat and horsepower equal to 120 units. We will have a miles per gallon 20
mile 1.78. So, we can calculate the total sum of square; first you calculate y hat then y minus
y hat and that. If you square it that will you give you error sum of squares ok, and then if you

just take sum that will give you the total sum of squares.

(Refer Slide Time: 07:51)

* Bokmais @ @ @ @ DnuCharcens. £ CONA B3 SourshisBonMark @ Firance Researsn.. M Gmal @ Naps (B News By Tansite

Fie Edt View Inset Cel Kemel Widgets Help Not Trusted Python 3 (ipykernel) O
B+ x®B B % PRn B C MW Markdown ol
Mean sum of squares

In (18]: MSS = TSS/(n-p-1)

Residual standard ern:r

In [19]: Residual standard error = np.sqrt (Mss)
print('Residual Standard Error = ',Residual standard error)

Residual Standard Brror = mpg 2593412
dtype: float6d

Confidence Interval
mpg ~ N(fy + ot + fohp, o)

Residual standard error (= 5%)is an unbiased estimator of 6.

In []¢ lower_bound = pred - [[1.96*Residual_standard error]]
upper_bound = pred + [(1.96*Residual_standard_error]]

And then if you just calculate divide that by n minus p minus 1 that will give you the mean
sum of square. So, the residual standard error is just take the square root of mean sum of
square that will give you the residual standard error ok. Now, so, the residual standard error
for this model is 2.59. Now, miles per gallon; that means, for a normal beta naught plus beta 1

times weight plus beta 2 times horsepower comma sigma square.

So, residual standard error is an unbiased estimator of the sigma square. So, you can calculate
the lower bound as predicted value minus 1.96 times residual standard error and upper bound
would be predicted value plus 1.96 times residual standard error and we print the lower bound

and the upper bound.

(Refer Slide Time: 08:53)

*soknans @ @ @ @ OnuCharcers., B3 CONA 3 SeurhsBookbark @ Fiance Reseorch., M omal § Naps [News By Tansse

Fie Edt Viev Iset Cel Kemel Wdgets Help NotTusted | Python 3 (pykeme) O
¥ BB A% PR B C P Makdown v B W
print('lover bound = ', lower_kound, 'upper bound = ', upper_bound)
lower bound = [[[16.69793717]]] upper bound = [[[26.86411133]]]
Model evaluation
In [21]: R2 = x2_score(y,y_hat)
print (R2)
plot.scatter (y,y_hat]
plot.xlabel('MPG', fontsize=l |
plot.ylabel('MPG Predicted', iccsize=16)
0.8267854513827914
Out[21]: Text(C, 0.5, 'MPG Predicted')

20
75 .

v 30 o

& >

£ 25 .
g .

T
§ 20 4

So, the lower bound will be 16.69 and upper bound will be 26.86.

iy,

)
WP

Ungygas?

=
<
3
m
e

(Refer Slide Time: 09:03)

Sonans @ @ @ @ Dnuchancons. B3 COM B3 Sourss Bookvark @ Financo Rsarcn, M oomal Q Naps (B News By Tnsite S“‘,‘\
N A
§H]
File ~ Edit View Irset Cel Kemel Widgets Help Not Trusted \mﬂona(w;yksmen o] \\\ ™ §
o
+ ¥ BB A% PRn B C P Mardown oL NPTEL
20 5
as o 0 0
" .
© 50 i
[
g .
s ,: "
R ¢
¢ .
£ D
- s e, 550
50 L
s *
L3
Doy § 5
0 55 » 3 » 5
MPG

Let's explore the relationship between hp and mpg

In []: plot.scatter(datal 'hp'], data['npg'])
plot.xlabel('Horse Power', fontsize=13)
plot.ylabel('Miles per gallon', fontsize=16)

asiall.

So, for next we fit a you know r square is 82.67 percent; so, along with weight when we put

horsepower, the r square jump to 82.6 percent and it becomes slightly tighter.

(Refer Slide Time: 09:25)

hooooknais @ @ @ @ OoniCrarcens. £ CONA B Sourishs Bookvark @ Firance Researcn M omil @ Naps [News By Trnsite S
Sy

§ 8

File ~ Edit View Inset Cel Kemel Widgets Help Not Trusted | Python 3 (pykernel) O \\\ 5

4

X 0B A PR B C W Makiown ") NPTEL

Let's explore the relationship between hp and mpg

In (22]: plot.scatter(data['hp'], data['mpg'])
plot.xlabel('Horse Power', fontsize=13)
plot.ylabel('Hiles per gallon', fontsizes16)

0ut(22]: Text(C, 0.5, 'Miles per gallon']

k)
0
.
ol .
c
S |
s .
0% e
v
a LI
S
v [|
9 L]
= H %
25 LI e .
.
» .

L) 100 150 00 50 30
Horse Power

Now, let us explore the relationship between horsepower and miles per gallon. So, what we

are seeing the relationship is maybe there is a quadratic relationship.

(Refer Slide Time: 09:40)

hokmans @ @ @ @ OnuChrcens. I CONA I3 SourshsBookark @ France Reseoren.. M Gmail § Nops 8 News B Transite

Fie Edt Viev Iset Cel Kemel Widgets Help NotTusted | Python 3 (pykeme) O

B+ x®B 4% PRin B C M Code ol

Variable transformation or feature engineering.

In [23): x['hp2'] = x['hp']#*2

/var/folders/9n/_nwdnnj94vgBecIpp8ETx6r0000gn/T/ ipykernel 1124/696619587.py:1: SettingWithCo
pyWarning:

A valte is trying to be set or a copy of a slice from a DataFrame.

Try using .loc[rew_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guid
2/indexing. htnl#returning-a-viev-versus-a-copy
X['hp2'| = x['hp']**2

In [24): x.head() L3

out(24]:
w ot e

0 2620 110 12100
1287 110 12100 I
2 230 @ 8649
3 3215 110 12100
4 3440 175 30625

So, we have to do some feature engineering; so, we add a new column by simply taking the
square of the column. And then x hat is x hat is to have weight horsepower and horsepower

square.

(Refer Slide Time: 09:57)

*ocknas @ @ @ @ OnuCharcers. B3 CONA 3 SeurhsBookbark @ Firance Reseorch., M omal § Naps [News By Tansste
Fie Edt Viev Inset Cel Kemel Wdgets Help NotTusted | Python 3 (pykeme) O

B+ xAB 2% PR B CH Makdon ¥ B L

In (25]: fit md = Im.fit(X=x,y=y)

y_hat = fit_m3.predict (X=x)

Model evaluation

In []: R2 = r2_score(y,y hat)
print (R2)

plot.scatter(y,y_he
plot.xlabel("HPS', ‘Lnisizes1s)
plot.ylabel('MPG Predicted', fontsize=16)

In []: nodel = sn.OLS(y,)
results = model.fit()
print (results. summary(|)

In [): data('hp2') = data['hp']**2
data.hezd|) I

In []: results = smf.ols('mpg - wt + hp + hp2', data=data).fit()
| print (results. sumary(|)

Now, we can fit the third model by just providing the proper x and y and use the predict to get

the predicted values.

(Refer Slide Time: 10:13)

KBomais @ @ @ @ Dnucrrcens. B3 CONA B3 SouwshisBookMark @ Firance Researeh Moomal @ Naps (B News B Tansite §“,‘\

RAVZA

§H]

Fie Edt Viev Inset Cel Kemel Wdgets Help NotTusted | Python 3 (pykeme) O NS

g

B+ x®B 4% PRin B CH Code ol NPTEL
savuviverr

paes =
plot.xlabel('MPG', fontsize=18)
plot.ylabel(MG Predicted', fontsizes16)

0.8583385887937931

0Out[26): Text(C, 0.5, 'MPG Predicted')

. :
i .
.
.
T Lot
g
£ s
g .
a s
©)
-4 KU
Su{ 0
"
nie .
10 5 2 5 0 Ed
MPG

In [): model = sn.OLS(y, X)
results = modsl.fit()
\

& ragult

So, the model evaluation when we do the model evaluation, what we find that the whole and

you know the r square be has gone up to 85.8 percent and it is becoming more tighter.

(Refer Slide Time: 10:31)

Kokmas @ @ @ @ DnuChrcens. I CON I3 SourshsBookark @ France Resewren.. M Gmail Q Nops (8 News B Transite

Fie Edt Viev Inset Cel Kemel Wdgets Help NotTusted | Python 3 (pykeme) O

B+ x®B 4% PRn B C M Code =l

In [27): model = sn.OLS(y, X)
results = model.fit()
print (results.sumary())

OLS Regression Results

Dep. Variable: mpg R-squared (uncentered): 0.838
Model: OL§ Adj. R-squared (uncentered): 0,821
Method: Least Squares F-statistic: 49.96
Date: Mon, 30 Jan 2023 Frob (F-statistic): 1.4le-1
Tine: 16:21:59 Log-Likelihood: -13.61
No. Observations: 32 a1c: 233.5
Df Residuals: 29 BIC: 237.7
Df Model: 3
Covariance Type: nonrobust
coef std err t Pt| [0.025 0.975)
Wt -2.1246 2,496 -0.851 0.402 -1.229 2.980
hp 0.3524 0.092 3.837 0.001 0.165 0.540
hp2 =0.0010 0.000 -4.466 0.000 =0.001 =0.001
omnibus: 4.937 Lurbin-Watson: 1.095 |
Prob(Cmnibus): 0,083 Jarque-Bera (JB): 4.591
Skew: 0.913 Prob(JB): 0.101
Rurtosis: 2.671 Cond. Wo. 5.54e404

Now, and we fit the OLS way r square slightly different 83 percent we have just did r square
is 82 percent. So, this is the sklearn, remember that sklearns calculation is 85.8 percent;

whereas, stat models is giving us a slightly different 83 percent ok.

(Refer Slide Time: 11:09)

*ooknais @ @ @ @ Do Crance s

File Edit

View Inset Cell Kemel Wdgets

B+ x@AB 4% PRn B C M Mo

Out (28]

B3 Cons 2 Sursh's Bonkarc @ Finonc Roscaren

Moomi Q Nops B News By Tansite

Help Not Tusted

mpg oyl disp hp drat wt csec vs am gear cab hp2

0 210 6 1600 110 390 2620 1546 0
1210 6 1600 110 390 2875 17.02
2 28 4 1080 93 385 2.320 1361
3 214 6 2580 110 308 3215 19.44

4 187 8 3600 175 315 3440 17.02

14 4 1210
14 4 12100
1 4 1 8640
0 3 1 12100
0 3 230625

| Python 3 (pykernel) O

e
O
963
3
N
Sl
NPTEL

In [29]: results = snf.ols('mpg - Wt + hp + hp2', [:ta=data).fit()
print (results. sumery(})

OLS Regression Results

Dep. Variable: mpg R-squared: 0.858
Model : 0L Adj. R-squared: 0.843
Nethod: Least Squares F-statistic: 56.55
Date: Mon, 30 Jan 2023 Frob (F-statistic): 5.29e-12
Time: 16:22:44 Log-Likelihood: =71.108
No. Observations: 32 AL 150.2
Df Residuals: 8 BIC: 156.1
Df Model: 3
Covariance Type: nonrobust

coef std err t P t| [0.025 0.975)

And this is our data set because you know dataset and then when we fit the OLS in this way
interesting. When we fit the OLS in this way what we have seen that r square is not 85.5
percent. So, maybe this is the right way of fitting the model ok; so, previous paper is fitting

you know the old way ok.

(Refer Slide Time: 11:38)

Y
)

*Boknas @ @ @ @ DnuChancens. £ CCNA B3 Sourish'sBookNark @ Finance Research.. M Gmail § Naps (B News QO Transite §‘ X
ANZA

§§

File Edit View Inset Cel Kemel Widgets Help Not Trusted | Python 3 (pykerne) O E\ s

-

B+ OB 4% PR ECH Coe 5 NPTEL

strong multicollinearity or other numerical problems.

Check Model Assumptions:

In []: resid =y - y hat

plot.scatter (y_hat,resid)
plot.xlabel('MPG Predicted', fontsizes1s) I
plot.ylabel|'Residual’, fontsize=16)

Breush-Pagan test for Homoscadaticity

In []: name = ['Lagrange multiplier statistic', 'p-value',
‘f-value', 'f p-value')
BPtest = sms.het breuschpagan(results.resid, results.model.exog)
BPtest = np.round(EPtest,5)
Lzip(nane, BPtest)

In [): resid = results.resid
resid.hist (bins = 20
plot.xlabel('Residual', fontsize=18)
plot.ylabel('Frequency ', fontsize='5)
plot. title('Histogran of Residuals')

And now, we have to do some we have to do some model as checking the model
assumptions. If you want to check the model assumptions what you do? First you define the

residuals and plot the residuals against the predicted value.

(Refer Slide Time: 11:55)

*soknas @ @ @ @ OnuCharcers. B3 CONA 3 SeurhsBookhark @ Firance Reseorch., M omal § Naps [News By Tansse

Fie Edt Viev set Cel Kemel Wdgets Help NotTusted | Python 3 (pykeme) O

B+ XxAB 4% PRin B CH Mrkdon v B i

plot.xlabel('MPG Predicted', fontsize=18)
plot.ylabel('Residual', fontsize=16)

0Out[30): Text(C, 0.5, 'Residual')

5 .

Residual

15 2 5
MPG Predicted
Breush-Pagan test for Homoscadaticity

In []: name = ['Lagrange multiplier statistic', 'p-value',
‘fevalue', 'f p-value']

(Refer Slide Time: 12:05)

Y
)

*Boknas @ @ @ @ DniChancens. EJCONA B3 Sourish'sBookark @ Finance Research.. M Gmail § Naps (B News Oy Transite §‘ X
Sy

§H§

File Edit View Inset Cel Kemel Widgets Help Not Trusted | Python 3 (pykerne) O i\ s

o

B+ x®B 4% PRn B C M Code ol NPTEL

Breush-Pagan test for Homoscadaticity

In [31]: name = ['lagrange nultiplier statistic', 'p-value',
'f-value', 'f p-value']
BPtest = sms.het _breuschpagan(results.resid, results.model.exog)
BPtest = np.round(EPtest,5)
Lzip(nane, BPtest)

Out[31]: [('Lagrange multiplier statistic', 1.40803),
('p-value', 0.70365),
('f-value', 0.42958),
('f p-value', 0.7334)]

In [): resid = results.resi
resid.hist(bins = 20)
plot.xlabel('Residual', fontsize=18)
plot.ylabel (' Frequency ,fontsize=15)
plot.title('Histogran of Residuals')
plot.show()

Kolmogorov-Smironov Test for Normality

In []: resid = results.resid

So, we see that there is not much going on; so, we can do a Breush Pagan test for a
homogeneity and the p value is quite high. So, from the Breush Pagan test we cannot reject

homoscadaticity, we can say safely that it is homoscadaticity behaviour, it has a

homoscadaticity behaviour.

(Refer Slide Time: 12:23)

K Bomais @ @ @ @ OnuCharcens.. EJCONA 3 Soursh's Bonkark @ Firance Research.. M Gmal § Maps (B News Dy Transiste
Kemel Widgets Help NotTrusted | Python 3 fpykernel) O

File Edit View Inset Cell

B+ x@ B 4 ¢ PR B CH Mkdon v B ld

PAULILLLLG| OLBLUYLAN UL KEBLUUGLS |

plot. show()
Histogram of Residuals

Frequency

2 031 4 s

-1

0 1
Residual

Kolmogorov-Smironov Test for Normality

In []: resid = results.resid
stats.kstest(resid, 'norn’)

(Refer Slide Time: 12:29)

*Boimais @ @ @ @ Onucharcens. I CONA 53 Sourh'sBonkiark 3 Finonco Rosorey Moomil Q Naps () News By Trnsite
File Edit View Inset Cel Kemel Widgets Help NotTrusted ¢ | Python 3 fpykernel) O
+ ¥ BB A% PR B C P Code vom ol

35

0

4 02 1 0 1 2 3 4 5

Residual

Kolmogorov-Smironov Test for Normality

3
In [33]: resid = results.resid
stats.kstest(resid, 'norn')

0ut[33]: KstestResult(statistic=0.2332491055388342, pvalue=0.051569075485037086)

NS

The histogram is sparse; we can run a Kolmogorov Smironov test the p value is marginally
small. So, in the previous also we saw that Kolmogorov Smironov test was marginally
smaller giving us a indication that there could be questionably the normality could be

questionable though other test could be fine; so, with this we will I will stop.

