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IlI-Posed Problem and Regularisation, LASSO and Risdge

Welcome to the part B of lecture 7 we are going to now talk about class of Ill-Posed

Problems.

(Refer Slide Time: 00:21)

A class of problem is known as ill-posed if either they fall into either of the 3 status or 3

features if you see 1 is there will be a unique solution does not exist for a problem, 2nd is

unique solution exists - but computationally not feasible, you have a unique solution but



computationally it is not feasible computationally finding a solution is impossible and the 3rd

possibility is unique solution exists, but the solution is highly unreliable.

(Refer Slide Time: 01:33)

Now, I will give you 3 examples of all 3 cases, first example is this is the example one

problem of variable selection for large p and small n. If you have a design matrix with n cross

p and the number of column is more than number of samples then the number of feature is

more than the number of samples, then what happens is X transpose X is not invertible as we

have seen in the previous part of this lecture.

Since we do not have any unique solution, this considered as a ill-posed problem. Second

example is the problem of variable selection particularly for very large p. So, you have p is so

large that the model complexity become too high and searching through all the model

complexity is become almost impossible. And the third problem is you have a solution, but



you can compute it, but your solutions are unreliable and multi quillinearity is a good

example of such problem. All these 3 type of problems are known as class of ill-posed

problems.

(Refer Slide Time: 03:00)

First, we will talk about class of ill-posed first class of ill-posed problems where unique

solution does not exist at all. Particularly problem for variable selection in large p small n set

up considered as a ill-posed problem, such problems are very common in medical sciences.



(Refer Slide Time: 03:33)

For example, in a study of the efficacy of a treatment, suppose the study randomly choose to

observe 100 patients; it means the sample is of size n equal to 100, so n equal to 100. Now,

scientist collects how run 1000 of tests and for each test on the patients say from regular

glucose level to genetic market anything and everything that is possible and collect the results

of those tests, those are the features of the; features of the problem. 

Now p runs into 1000, so your n is 100 and p is 1000 and this is the very common scenario

that you can find in the medical sciences.



(Refer Slide Time: 04:32)

So, we will find it very often in such cases what happens? In such cases your x transpose x is

not invertible is not invertible. So that means, you have infinitely, but normal equation has at

least one solution, so that means in such cases you have infinitely many solutions; infinitely

many solutions you have infinitely many solutions and beta equal to 0 is also a solution. 

If beta equal to 0 is also a solution what is the interpretation of it? It means that none of the

feature you have spent so much money to collect the results of those you know glucose test

and genetic marker etcetera, none of these features have any effect on the treatment of the

target variable y. It does not have any effect. So, this is not a very desirable situation. 

So, it is not the problem of the medical test there is no biological or medical problem, it is

just a model the mathematical model that we are considering cannot address the issues,



cannot handle this. So, the model is inadequate in this scenario in this the model cannot

address the large p small n problem.

(Refer Slide Time: 06:18)

So, this is a very common scenario that you will find in the medical sciences. Second problem

is typically called problem 2 in the class of glucose problem unique solution exists, but

computationally not feasible. For example, you are running a variable selection in large p

considered the impulse problem for model complexity. 

Suppose you are working in a credit rating group, where you are working with customer

databases the number of customers in your database is more than 100,000. So, your n is

100,000 ok each customer you have 1000 of features. So, p is 1000 so theoretically you

should be able to run a you know fit a model.
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Now if you run a simple stepwise variable selection you have to fit 1 plus p into p plus 1 by 2

many models that will be 500,501 many models that is Half a million model. So, you have to

fit Half million model to just run a simple stepwise variable selection, Half million model you

have to consider forget about base subset selection just to fit a simple stepwise selection

stepwise variable selection technique you have to fit Half million model and each model you

have to fit with 100,1000 data points. 

So, it is going to be a humongous computational facility you require, it may take several days

to complete your job and I am talking about this is a very real life scenario you can very easily

run into this kind of problems. However often time in corporate environment you do not have

several days and upper management wants to result by the end of the day and these are the



scenario where theoretically you have a unique and good solution, but computationally

finding the solution is not possible by the time. 

You have a time budget your time budget is within 24 hours you have to finish this work, but

you have to go through Half million models to find the best model and among the Half

million models each model has to be trained using 100,1000 data points. So, it is simply not

possible given the computational facility you it is not simply not possible to fit all these

models.

(Refer Slide Time: 09:20)

So, unique solution exists now the third problem is unique solution exists, but unreliable. So,

the problem of multi colinearity is a third kind of problem where you have a unique solution,

but it is unreliable. An interesting problem in the sense that you have a unique solution;

however, it is not reliable so because and why it is not reliable? Because standard error



becomes, so large that it cannot do any reliable inference you cannot do any reliable statistical

inference.

(Refer Slide Time: 10:04)

 .

So, how you solve it? So, essentially these problems does not have a solution as it is. If this is

the scenario what you do? You regularize the problem you regularize the problem. So, that

you have a solution and this methodology is called regularization. So, you regularize the

ill-posed problem, so that we have a solution this methodology is called regularization ok.

The most popular is called the Tikhonov regularization in 1943 unlike the Tikhonov he was a

Russian mathematician, he tries to find the solution for ill posed problems by imposing

certain restriction or conditions on the solution space. If a solution cannot be obtained or if

solution can be obtained then we can say the process has regularization process of the

ill-posed problem.
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How you find a regularization you essentially put a penalize the objective function, you put a

restriction on the parameter space of the objective function that is how you do it. So, how it

works? So, the class of function is controlled by explicitly penalizing the residual sum of

squares of f with roughness penalty. What is it?

So, typically what happens is how OLS is works? OLS try to OLS is try to minimize residual

sum of squares of the target function that is how the OLS work ok, that solution is typically

called OLS. So, penalize this we will still work with the RSS the residual sum of square, but

on the functions on the objective function we will put a penal term and we call it penalize

residual sum of squares ok and the amount of penalty will depend on the lambda.

Lambda is typically called the tuning parameter. So, if lambda equal to 0 means there is no

penalty if you put lambda equal to 0 and if higher the lambda more the penalty and typically



lambda is estimated from the data. So, we take f X equal to X beta generally and the residual

sum of square of beta will be y minus X beta transpose y minus X beta. So, this is the residual

sum of squares of beta and then we put a penalty term on the beta that is how we typically

work.

(Refer Slide Time: 14:14)

What about penalizing L 1-norm error? We can penalize L 1-norm error we can in this model,

but for now we will focus on L 2- norm error only.
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So, we are not going to focus on L 1- norm error what penalty to choose that always a

interesting question. So, the most possible choices or popular choices L 2-norm penalty that is

P beta equal to beta minus beta naught transpose times beta minus beta naught now beta

naught equal to choose 0. If you choose that will be this is typically L 2 penalty this is

typically L 2 penalty ok.
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So, the analysis with L 2 penalty is so we want to penalize these L 2 penalized laws

essentially y minus X beta transpose y minus X beta plus lambda beta transpose beta and if

we penalize this so basically that will give us the ridge solution. So, if we all we have to do

just penalize just minimize this objective function, this is our objective function and we just

minimize with respect to beta and the solution is called ridge solution.

So, this the equivalent solution is equivalent construction is you just minimize the residual

sum of square essentially, but subject to this constraint this also gives you the ridge solution

same solution. Either you minimize this entire objective function with this sort of a Lagrange

multiplier kind of effect you can see or you just solve it as a constraint optimization.

Here you minimize the residual sum of square subject to constraint beta transpose beta less

than equal to T. So, it is something like that what is happening here if you look it carefully



what ticon of solution is doing is you put a budget on the total budget on the sort of a on the

beta and if you put T goes to 0. If you put T goes to 0, then what happens is naturally many

beta start become shrinking. If the beta start become shrinking beta start going to 0 they

typically shrink towards 0 that is what happens.

(Refer Slide Time: 17:24)

Now, one can show that lambda here and T they have a 1 to 1 correspondence between 1 to 1

correspondence between these two parameters. But I generally there is no explicit

mathematical expression now we have never found it, but one can argue that they will they

will have a one-to-one function. Now following the minimization problem if you solve this

minimization problem the ridge solution is X transpose. 

So, you have an analytical solution X transpose X plus lambda I inverse X transpose y. So,

ridge solution is a analytical solution it is a analytical solution this is a very good news for us,



though I am assume if we know the value of lambda then we can compute the ridge solution

for beta. So, ridge solution is a special case of Tikohonov solution.

(Refer Slide Time: 18:42)

Next is LASSO regression least absolute LASSO stands for least absolute shrinkage and

selection operator or LASSO, the LASSO shrinkage method like ridge with subtle, but

different important differences. What is the difference? The difference is the penalty term

instead of giving a L 2 penalty here they are putting L 1 penalty and rest of the thing is exactly

same.
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So, equivalently you can show that you are trying to minimize the residual sum of square

subject to constraint this and as same thing you can basically you are budgeting the total

amount of beta, if you push the T towards 0, then all the beta will shrink towards 0. So,

LASSO does not have close form solution like ridge.
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LASSO you have to solve it as a optimization problem you have to solve it as a optimization

problem you cannot unfortunately you do not have analytical solution. Computer LASSO

solution is essentially a quadratic programming problem turns out to be and efficient

algorithms are available for computing the entire path of the solution for different values of

lambda. So, with same computational cost as ridge regression. So, in that way it does not

matter much.
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So, because of the nature of the constraint making t sufficiently small will cause some the

coefficient to be exactly 0, ok. Thus, what does it mean some of the beta? So, if I have x 1 x 2

dot dot dot x p and now suppose the beta 2 turns out to be exactly 0. That means, in my

model x 2 does not have a effect. So, effectively beta 2 equal to 0 means that you are

dropping that LASSO solution is dropping that predictor from the model.

So, this is that is how it would be, so that is why LASSO solution it is like you know for

stepwise variable selection you are fitting each model. But here I am fitting only one model

remember that I am fitting beta 1 x 1 beta 2 x 2 beta p x p I am fitting one model with LASSO

penalty and if turns out suppose beta 2 equal to 0 beta p equal to 0. That means, effectively I

am dropping x 2 and x p from the model and I am obtaining the best fitted model by that. 



So, in one shot I am getting the best model while dropping the predictors or the features

which has no effect in the y which has no effect in the y. So, this thing this phenomena is

called continuous subset selection. Now, interestingly ridge takes care of the multicollinearity

kinds of issue and LASSO take cares of the do the variable selection. So, compromise

between the ridge and LASSO was given by Zou and Hastie 2005 known as Elastic Net

Penalty.

(Refer Slide Time: 22:37)

They invented this elastic net penalty which is essentially a convex combination of LASSO

and ridge and LASSO, you can see alpha has to be between 0 and 1 and they build this new

penalty.
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So, here is a extract from Tibshiranis book. So, this is an example of LASSO, if LASSO how

the LASSO penalty would look like and you see the LASSO penalty is very sharp has a very

sharp edges and because of that it the optimization technique. So, this is the typically the

Bayesian interpretation the this is the posterior distribution. In Bayesian interpretation what

happens in classical statistics we do all inference based using sampling distribution.

In Bayesian inference we do all the inference using posterior distribution, here they have put a

posterior distribution and what you can see that for the LASSO this posterior distribution is

pulled so much that for beta one it includes 0. So, the beta 1 does not have any effect;

whereas, because beta 1 can be somewhere in this region, but beta 2 is typically in this region.



So, beta 2 still have effect but beta 2 does not; whereas, in this is the ridge penalty sort of a

ball it creates a ball effect it does not create a and because it is much more smooth it does not

pull the coefficient that much. So, still it may touch, but it is not actually containing the beta

2. So, ridge penalty does not yield a yield a sparse solution, but LASSO penalty yields a

sparse solution. 

So, what I mean by sparse solution what I mean by sparse solution? If I have x 1 x 2 x 3 and

that means corresponding coefficient beta 1 beta 2 and beta 3 if any of them becomes 0 the

solution itself will force tell me that yes, it is exactly 0. That means, automatically I am

dropping that predictor from the model, if beta 2 and beta 3 turns out to be exactly 0 then I

can automatically the model itself is dropping and the final solution itself is dropping x 2 and

x 3 and keeping only x 1 beta 1 in the model and as a result and LASSO can do that. 

So, that is why LASSO penalty have a capability to yield sparse solution, but ridge does not.

Whereas elastic net has an interesting property which is a convex combination of both ridge

and LASSO. So, it do take care of both multicollinearity and variable selection. Whereas, the

ridge do take care of the multicollinearity, but cannot handle the variable selection. On the

other hand LASSO do handle variable selection, but cannot handle the multicollinearity ok.
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So, with this I have kind of summarize here Ridge Regression takes care of the

multicollinearity the paper it was developed by Hoerl and Kennard in 1970. Then 1996

LASSO Regression which takes care of the feature selection and Elastic Net Regression takes

care of both feature selection and multicollinearity ok nice alright.
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In the we will now resume some hands on and let us go for go to do some hands on and see

you then take care bye.


