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Lecture - 23
Understanding Multicollinearity

Welcome to the lecture 7 part A. In this lecture, we are going to talk about Multicollinearity.
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We consider the linear model y equal to X beta plus epsilon, where epsilon follow normal

distribution 0 sigma square I n and n is greater than p. So, that means, sample size is greater

than number of features that we have in our data set ok. Now, if this is the case, then we can

show that y follow normal X beta sigma square I n, ok. It is a N variate normal. The least

square estimator of beta will be beta hat which is X transpose X inverse X transpose y.
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Now, we in the previous lecture, we also discussed that beta hat follow p variate normal with

mean as expectation of beta hat as mean as beta and variance of beta hat is sigma square X

transpose X inverse.
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Now, we will first question we will ask ourselves that what is multicollinearity? If correlation

between two predictors, there are p many predictors so, X is typically X 1 to X p ok. If any of

the two predictors, any of the two predictors have correlation exactly 1. So, correlation

between say i-th predictor and the j-th predictor is exactly 1. That means one column is

exactly dependent on other and that will result determinant of X transpose X to be 0.

So, it immediately means that X transpose X is not invertible because what is X transpose X?

X transpose X is and X transpose X inverse is adjucate of X transpose X divided by

determinant of X transpose X and if it is 0 so that means, X transpose X is not invertible. In

such case, unique solution does not exist right.
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Now, in such situation in now, this is what I am giving you a extreme situation ok. Now, most

of the time, you will never probably give put one if one column is exactly linearly dependent

on other.
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So, that means, effectively you can write X i equal to some constant of X j right so, and if we

know that there are some columns which is exactly linearly dependent on another column,

then we will not put that column in our data set at all. So, this is like extreme example.

More reliable, more reasonable example is that correlation between two predictors nearly 1 or

minus 1, but not exactly 1. It will not be exactly 1. So, correlation between say X i and X j is

0.99. What happens then? So, that case what will happen is determinant of X transpose X is

some small delta value where delta is positive. So, determinant of X transpose X may be very

small value, delta is a very small value ok. It is a very small value.

So, X transpose X will be invertible there will be no problem, X transpose X will be

invertible, but every element of X transpose X will be very large. Every element because what



is X transpose X inverse, X transpose X inverse is adjucate of X transpose X and divided by

determinant of X transpose X. 

Now, if X transpose X determinant of X transpose X is very small value, then basically you

are dividing every element of adjucate of X transpose X by a very small value. Effectively

that will make the X every element of X transpose X inverse very large.
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So, what will happen in this case is basically unique solution of beta hat exist, but the

covariance of beta hat will be extremely large. So, every element of covariance of X beta hat

will be extremely large. So, the standard error so, naturally the standard error of beta hat will

be very large. Hence, valid statistical inference cannot be implemented.
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What does it mean actually? Let us try to understand with a simple day, simple toy example.

So, I am considering a no intercept model of the I am considering the empty curves dataset. It

is a simple small toy dataset, but very good dataset to understand the multicollinearity. I am

using I am considering a no intercept model ok, just to understand the concept. I mean

probably I will not use in real when we will I will do a proper analysis, but just to understand

the geometry of the concept. 

I am using a simple no intercept model where miles per gallon is a function of weight and

their axial ratio. So, mpg equal to beta 1 weight plus beta 2 weight plus epsilon, I know

correlation between weight and rear axial ratio is negative 0.71 ok not very bad like 0.99 or

something, but on a higher side.
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Now, what is happening if you estimate the beta 1 hat and beta 2 hat OLS estimator

correlation will be 0.92? Ok. So, what is happening here?
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So, we can see this is very correlation is very high.
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Now, the what is happening is basically the correlation is whatever the correlation that you

are seeing between X 1 and X 2 that is getting induced in that is getting induced in the

sampling distribution of beta hat, because what is the sampling distribution of beta hat? You

see beta hat is following p variate normal in this case it will be p variate 2 variate normal with

beta sigma square X transpose X inverse.

Now, correlation between the weight and rear axial ratio this will get reflected this will get

reflected in the correlation between the 2 of course, adjusted with for sigma squared, but this

as a result because the high correlation the whole thing become very large and as a result what

is happening is if you do a 95 percent confidence interval, see beta 1 was the correlation beta

1 was coefficient of weight ok.



Now, it becomes so big it includes the confidence interval includes the 0. So, based on the our

statistical inference will say then beta 1 does not is include 0 is possible value of beta 1. So,

weight does not have effect on mpg. So, weight does not have impact on mpg ok.
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Now, instead of OLS estimator if we use the ridge estimator what happens is ridge estimator,

we will talk about it how ridge estimator is being calculated, the ridge the correlation between

ridge estimator is negative reduced to point negative 0.73. The correlation between the OLS

estimator was very high negative 0.92 and as a result the it was getting very tight. Now, ridge

estimator reduce the correlation.
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So, that means, this tightness is now reduced it is now here now the confidence interval does

not include 0 anymore. So, using ridge estimator we can say using ridge estimator we can say

that beta 1 is non-zero that is weight do have effect on mpg ok.
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So, I hope the concept of the multicollinearity is clear now. So, because of the in summary we

can say that because of the you know extreme correlation between the predictors the that

correlation between the predictor get induced in the sampling distribution of the OLS

estimator. As a result the sampling distribution become very tight and as a result the standard

error or the margin of error for each estimator become very large.

So, the standard error or margin of error get inflated and statistical we cannot do a proper

statistical inference with such kind of estimators. But we have to do; that means, some

correction and these estimator is one such correction for and this problem is known as

multicollinearity.

Now, for this kind of problem multicollinearity problem we have to do some kind of

correction these estimator is one such estimator which actually do the correction and because



of the ridge correction the correlation between the coefficients the sampling distribution

reduces and as a result the overall standard error reduces. Next question is how I identify if

my data suffers from multicollinearity? There are many different ways to identify one kind of

cool proof method is variance inflation factor. 

Variance Inflation Factor VIF is an index which indicates how much feature is contributing

towards multicollinearity problem. So, analyze the magnitude of the multicollinearity by

considering the size of the variance inflation factor or rule of thumb is if the variance inflation

factor is greater than 10 then definitely there is a high multicollinearity. Cutoff 5 is also

commonly used.
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Now, how typically what is the motivation of variance inflation factor? Consider a linear

regression model y equal to X beta plus epsilon standard error of beta j is this ok. So, you just



take the X transpose X inverse the j j-th diagonal element of the X transpose X inverse

multiply with the sample variance and take the square root of that. It turns out that the

variance of beta j can be also expressed as this that a square by n minus 1 variance of X j

times 1 minus 1 by 1 minus R j square.
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Now, what is R j square? R j square is multiple R square of X j on X 1 to X j minus 1 and X j

plus 1 to X p. So, basically you define a you set up a simple regression model of where

dependent variable X j and equal to gamma naught plus gamma 1 X 1 plus dot dot dot gamma

j minus 1 X j minus 1 and gamma j plus 1 X j plus 1 to gamma p X p plus epsilon. You fit

that model and get the multiple R square for that model and that models R j square is this R j

square.
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Now, the term 1 minus R j square is known as the variance inflation factor of the j-th

predictor ok.
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So, question is how we can calculate p different VIF's one for each feature? First, we run the

ordinary least square regression that has X i as a function of other explanatory variables. Say

suppose if i equal to 1 we fit X 1 as a function of gamma naught X plus gamma 2 X 2 plus

dot dot dot gamma p X p plus epsilon and then you calculate the variance inflation factor beta

i would be simply this guy 1 over 1 minus R i square.
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Once you have that if it is greater than 10 you call it there is a multicollinearity, if it is greater

than 5 then that is also can be used for multicollinearity.
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So, in R there is a function called VIF in the car package which implement the variance

inflation factor. In Python function variance inflation factor is a stat there is a function called

variance inflation factor in statmodels package that can be used to identify the

multicollinearity.



(Refer Slide Time: 17:07)

Next video we will discuss issues of ill-posed problem and the problem of multicollinearity is

a special case of a class of problems called ill-posed problems ok. So, we will stop here and

see you in the next video where we will discuss the class of ill-posed problem.

Thank you. Bye.


