Predictive Analytics - Regression and Classification Prof. Sourish Das Department of Mathematics Chennai Mathematical Institute

Lecture - 19 Hands-on with Julia

Hello all, in this video I am going to introduce you to how to do Regression Analysis using Julia. Julia Programming Language is a new language and it is comparatively new compared to R or Python R and Python was released the first version was released in 1990s whereas; Julia's first version was released in 2018.

So, Julia is a comparatively new language, the advantage of Julia is I find two fold; one is expressivity that is if you want to write a particular code or something it is much easier in terms of its expression and second advantage I find that Julia programming language tries to take the advantages of new compiler theory new advantages and advancements of the compiler theory.

So, it is it tries to implement the all the you know functionality faster than R and Python. So, when we are trying to crunch lot of large big data, the Julia turns out to be very useful. So, I am going to start how to do regression and classification particularly regression in this video using Julia.

(Refer Slide Time: 01:58)

So, first I will start a Google site and in Google if you just say download Julia programming language or Julia for windows you can write Julia programming language or you can say for windows or then you will get like you know it will take you to the latest version of Julia.

(Refer Slide Time: 02:38)

→ C 🔹	julialang.org/downloads/		ů ☆ ♥ 🖲 🕸	0 * C 🛛 * 🗆 🌒
Bookmarks 🧟		BoolMark @ Franco Research. M Gmail @ Maps	News Q Translate	
	Current stable release: v1 Checksums for this release are available in both A	.8.5 (January 8, 2023) ID5 and SHA256 formats.		
	Windows [help]	64-bit (installer), 64-bit (portable)	32-bit (installer), 32-bit (portable)	
	macOS x86 (Intel or Rosetta) [help]	64-bit (.dmg), 64-bit (.tar.gz)		
	macOS ARM (M-series Processor) [help]	64-bit (.dmg), 64-bit (.tar.gz)		
	Generic Linux on x86 [help]	64-bit (glibc) (GPG), 64-bit (musl) ^[1] (GPG)	32-bit (GPG)	
	Generic Linux on ARM [help]	64-bit (AArch64) (GPG)		
	Generic Linux ^T on PowerPC [help]	64-bit (little endian) (GPG)		
	Generic FreeBSD on x86 [help]	64-bit (GPG)		
				4

And here you get windows Mac generic Linux typically if you are using a Ubuntu system this version should work.

(Refer Slide Time: 02:50)

So, I am using Mac Book. So, I with M- series processor so, I my in my system I am going to use this Julia.

(Refer Slide Time: 03:08)

Now, if you open Julia then it will basic Julia console will open in terminal, sorry that.

(Refer Slide Time: 03:15)

So, it will open in terminal. So, that is how it will behave. So, for example, if I want to say alpha and then press tab then it give me the alpha and then I can use assign 2 and then if I say beta and tab and I say 3 then it gives me if alpha and beta 2 variables now we have defined and then. So, let me just increase the size. So, and then if I just say alpha plus beta then it gives me 5.

So, alpha beta you can defined as variable here because Julia do allow Unicode. In fact, certain advantages is that if you can use some you know since it is do Unicode I have Bengali you know script installed here. So, if I just say [FL] in it is a Bengali script and so, say 2.

(Refer Slide Time: 04:41)

And then [FL] equal to say 4 and then [FL] plus [FL] sorry [FL] it is giving me 6. So. In fact, if you are if you have Hindi script or if you have Kannada script or Tamil script you can install it and you can define your variable mean width. So, if you have any you can define your variables in using you know your local regional language and this I find is very helpful in terms of expressing the equations and other things.

So, but you know using writing everything in the console is bit difficult I mean when typical I generally use a VS code.

(Refer Slide Time: 05:51)

	predict_price_of_diamond.il – Lasso	
EXPLORER	K Get Started & lasso_test.jl & predict_price_of_diamond.jl ×	\triangleright \checkmark \square
V LASSO	src > & predict_price_of_diamond.jl	
✓ src	59	1878
Iasso_test.jl	60	Elemente.
** predict_price_or_di.	61 @time begin	Upola
N	62 for i in 1:10000	Procession of the local division of the loca
Ċ.	63 model2 = lm(@formula(Price~Carat+Cut),diar	monds);
HC I	64 end	
	65 end	
	45 chu	
	PROBLEMS OLITPLIT TERMINAL	+、 □ 章 へ
8		
8		(

And in the VS code you have to go to the VS code is very useful in terms.

(Refer Slide Time: 05:56)

So, when I do some you know project based development I typically rely on VS code. But for teaching I find the you know I find Julia Jupyter Notebook is very useful.

(Refer Slide Time: 06:19)

So, I am going to open Jupyter Notebook, here is my I am opening my Anaconda fast.

(Refer Slide Time: 06:22)

O localhost:8888/tree		Q ሰ 🕁	V 🚯 🖗 🗊	* 🛙 🛱 🕯
😵 😵 😵 Don M Chance Ins 🗎 CCNA 🗎 Sourish's BookMark 🔮	inance Research M Gmail 💡 Maps 👸 News	🍇 Translate		
💭 Jupyter			Quit	Logout
Files Running Clusters				
Select items to perform actions on them.			Upload	New - 2
	*	Name 🗸	Last Modified	File size
Applications			6 months ago	
Desktop			7 minutes ago	
Documents			5 days ago	
Downloads			2 hours ago	
C Movies			2 years ago	
C Music			2 years ago	
Ci opt			a year ago	
Pictures			2 years ago	
Public			2 years ago	
tatsmodels_data			9 months ago	
 Bayesian Regression.ipynb 			4 months ago	10 MB

Now I am going to launch my Jupyter Notebook.

(Refer Slide Time: 06:28)

O localhost:8888/tree	이 쇼 ☆ 😳 🐼 💷 🕈 📰 🗍
😵 😵 😵 Don M Chance Ins 🗎 CCNA 🗎 Sourish's BookMark 🔇 Finance Research M Gmail	💡 Maps 📸 News 🔩 Translate
💭 jupyter	Quit Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New C
0 - 1/	Name 4 Julia 1.6.3
C Applications	Julia 1.8.2
Desktop	Python 3 (ipykernei) R
Documents	Other
Downloads	Text File
Ci Movies	Folder
C Music	Terminal
C opt	a year ago
Ci Pictures	2 years ago
	2 years ago
tatsmodels_data	9 months ago
🗌 🖉 Bavesian Regression.jpvnb	4 months ago 10 MB

And here you can see Jupyter 1.8.2 version.

(Refer Slide Time: 06:31)

I have and now I am going to use the Jupyter Notebook in our an learning the regression with Julia. So, first thing I will do I will first code block I am going to create as a markdown regression with Julia. So, if we just done it, it will give me the heading then first thing I will do I will I am just going to you know call some R data sets these are the packages these are the Julia packages that I am going to call R data sets, Plots and GLM.

Now, what R data sets does it is a Julia package which essentially from the different popular R packages it takes the data set and gives you the data here. So, all the popular data sets like empty carts data set and the diamond data set in the "gg plot 2" all those data set is automatically available in Julia. So, this is a very useful I find this is very useful and then what I am going to do, I am going to call the diamond dataset from ggplot2 ggplot2 'ggplot2', I am going to call "diamonds" data set.

(Refer Slide Time: 08:49)

So, let me just run it sorry here is a spelling mistake yeah there is no error now I believe. So, first and if I just say first comma say 6 and run it. So, what it will do it will just plot the first 6 rows of the data set in the diamond of the diamond dataset. Now, what we are seeing that diamond data set has one to about 10 columns 3 4 5 6 7 8 9 10 carat, cut, color, clarity, depth, table, price of the diamond and then X, Y, Z there is a concept of table of the diamond and what is the length, breadth and height of the diamond.

So, those dimensions are given here X, Y, Z and these all have very important effect on the pricing of the diamond. So, first if you just so, and it is read as a data frame. So, like pandas data frame in Python and data frame in art Julia also has a data frame and this data frame is also very useful, this data structure particular data frame is very useful. Next, if I just say names equal to names of diamonds. So, it gives us the names of the all columns ok.

(Refer Slide Time: 10:32)

Now, similarly if I just say names the 7th one if I just call the 7th one. So, it is the 7th one element is price. So, now, name is a vector essentially it is a 10 element vector of all strings it is a vector of strings this essentially extracting all the column names of the data frame.

So, the first thing what I am going to do from the data this data frame I am going to take the price and the Carat, Carat is also a continuous variable like float 64 "Price" is integer 32, 32 bits integer, but let me just call these guys. So, Price equal to diamonds 7 and carat equals to diamonds comma. So, this exclamation marks means you take all the rows essentially nms 1 so, no error so far.

(Refer Slide Time: 12:37)

🛊 Bookmarks 🕲 🧐 🧐 Don	M Chance Ins 🛅 CCNA 🛅 Sourish's BookMark 🔇 Finance Research M Gmail 🍳 Maps 👸 News 🧤 Translate
File Edit	View Insert Cell Kernel Widgets Help Trusted / Julia 1.8.2 O
8 + %	
In [7] Out[7] In (8)	<pre>"Clarity" "Depth" "Table" "Price" "x" "y" "z" "ama[7] "Price" "Price" "Price" "Price" "Price" "Price"</pre>
Tn (9)	Plots mini-(Carst. Srice)
Out[9]	

Now, what I am going to do I am going to run the from the Plots I am going to call the plot function ok Carat, comma Price if I just run this.

(Refer Slide Time: 12:54)

So, you can see it is plotted as sort of a series typically by default plot strives to plot as a you know time series. So, that is why it is slightly weird I rather I would like to see a scatter plot here.

(Refer Slide Time: 13:13)

So, what you have to say you have to say a series type equals to colon scatter. So, now, it is giving you the scatter plot now, but it is saying y 1. So, I do not want the y 1 it is still treating it as a sort of a carat as the index here and the price as if y series time series.

(Refer Slide Time: 13:50)

So, what I want I do not want the label. So, what I am going to do I am going to say that do not put me any level. But if you see the there is no labelling of the x axis of y axis.

(Refer Slide Time: 14:12)

So, I have to put some labels Plots dot x label "Carat" C a r a t and Plots dot ylabel "Price".

(Refer Slide Time: 14:42)

Now, if you run now you can see the price and the carat as the carat increases you can expect that the price will increase as well. Next, I want to fit linear regression may be between Carat and the Price.

(Refer Slide Time: 15:09)

So, what I will do what kind of model I will fit. So, I will fit Price equals to beta naught plus beta 1 times Carat plus varepsilon the error part. Now, if you run it this is the model I want to fit. So, we can just write it like this. Sorry, we want to fit we want to fit the following regression model ok.

(Refer Slide Time: 16:12)

	in chance in		.NA 🔲 50	unish s bookm	tark 🥑 Finar	ice Kesearch	M Gmail	V Maps	or News	Iransiate			
File Edit	View	Insert	Cell	Kernel	Widgets	Help					Trusted	Julia 1.8.2 O	
8 + %	ව ලි	↑ ↓	Run	• C	⋫ Code	×		<u>ad</u>					
	5.1	JUX 10		000 00 00 00 00 00 00									
		0 E	-	1	2		3		4	5			
						Carat							
	we wa	nt to fit th	ne followin	ng regressi	ion model								
	Price =	$\beta_0 + \beta_1$	Carat + ε										
Tp (12)	model	1 - 1-/	8formul	Price	~ Carat	diamond	e).						
In [15]	. mouer	T - Trul	erormar	a(riice	carac	, aramona	•//						
In [15]	: model	1											
Out[15]	2-ele -225 775	ment Ve 6.36058 6.42561	ector{F1 30045411 17968445	oat64}: .6									
-													

So, if we just run it. So, this is the model we want to fit. Fitting this model is almost same as fitting a regression model in R. So, so you just call model. So, let me just say model 1 we will try some other models as well. So, Im we call Im at the rate formula now in formula you have to keep what model you want to fit.

So, you say Price tilde Carat C a r a t and then you have to give the name of the data frame. So, in the name of the data frame where both variables are available ok. Now, if you just run it. So, it ran simply I will write model 1.

(Refer Slide Time: 17:14)

	File Edit	View Insert	Cell Kerne	el Widgets	Help				Trusted 🖌	Julia 1.8.2	С
E	1+ 26	b 16 ↑ ¥	► Run 🔳 C	C 🏶 Markde	own ~						
		Price = $\beta_0 + \beta_1$	Carat 🕂 🥭								
	In (13):	model1 = lm(@formula(Pri	ce ~ Carat)	.diamond	s);					
						-11					
	In [16]:	model1									
		t64}}				ion, materia	11 10000437	vector (Inte	*////, Nau	TIX{FIOR	
		t64}} Price ~ 1 +	Carat				.[1100004];	vector(into	* <i>;;;;;</i> , nat	rix{rioa	
		t64}} Price ~ 1 + Coefficients	Carat :				(1100001),	vector (1nto	<i>•[]]],</i> nat	rix{rioa	
		t64}} Price ~ 1 + Coefficients	Carat : Coef. S	td. Error	t	Pr(> t)	Lower 95%	Upper 95%	<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	rix{rioa	
		t64}} Price ~ 1 + Coefficients (Intercept) Carat	Carat : Coef. S -2256.36 7756.43	td. Error 13.0553 14.0666	t -172.83 551.41	Pr(> t) <1e-99 <1e-99	Lower 95% -2281.95 7728.86	Upper 95% -2230.77 7784.0	<i>* , N</i> at	118(1104	

Let me just have run it. So, you can see that it has fitted a model with the coefficient this is the beta naught. So, we can say the beta naught value is beta naught. So, we can say beta naught equals to negative 2 point this. 2nd is we can just copy this line here and beta 1 is 7756.43 and then and standard error of beta naught is equal to 13.0533 and standard error of beta 1 is 14.0666 ok.

(Refer Slide Time: 18:40)

Fi	le Edit	View I	nsert	Cell P	Kernel	Widgets	Help				Trusted	Julia 1.8.2 O	
8	+ % 6	b 16 🛧	۰ ¥ I	Run	C	₩ Code	Ý						
		loat64, t64}} Price ~ Coeffic	Linear 1 + Ca ients:	Algebra	.Chol	.eskyPivc	oted{Float	t64, Matrix	<{Float64},	Vector{Int6	\$}}}, Mat	rix{Floa	
				Coef.	Sto	. Error	t	Pr(> t)	Lower 95%	Upper 95%			
		(Interc Carat	ept) -	2256.36 7756.43		13.0553 14.0666	-172.83 551.41	<1e-99 <1e-99	-2281.95 7728.86	-2230.77 7784.0			
	In []:	1. β ₀ = 2. β ₁ =	-2256. 7756.43	36 and se 3 and se(j	$e(\beta_0) = \beta_1) = 1$	= 13.0553 14.0666							

And then what we can do we can also say what is the t value if you see this negative 2.5 2256.36 divided by 13.0553.

(Refer Slide Time: 18:56)

File	Edit	View Insert	Cell Ke	rnel Widgets	Help				Trusted 🖋 Julia 1.8.2 O	
8	• > 4	<pre>ID</pre>	▶ Run ■ BarAlgebra. Carat	C H Code	v otea{rioat	E M	{F10at04},	vector(1nto	4}}}, Matrix{rioa	
			Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%		
		(Intercept) Carat	-2256.36 775 <mark>6.1</mark> 3	13.0553 14.0666	-172.83 551.41	<1e-99 <1e-99	-2281.95 7728.86	-2230.77 7784.0		
		1. \$\beta_0 2. \$\beta_1	= -2256.36 = 7756.43\$	<pre>\$ and \$se(\h and \$se(\be</pre>	eta_0)=13 ta_1)=14.	.0553\$ 0666\$				
	In [17]:	-2256.36/13.	0553							
	Dut[17]:	-172.8309575	4214764							
	In []:	l								

You see this is negative 172.83 the t value is here.

(Refer Slide Time: 19:13)

	File Edit	View Insert Cell Kernel Widgets Help	Trusted 🖋 🚽	lulia 1.8.2 O	
ĺ	9 + × 4	B ← ↓ Bun ■ C → Markdown ∨ B M Price ~ 1 + Cault			
		Coefficients: Coef. Std. Error t Pr(> t) Lower 95% Upper 95%			
		(Intercept) -2256.36 13.0553 -172.83 <1e-99 -2281.95 -2230.77 Carat 7756.43 14.0666 551.41 <1e-99 7728.86 7784.0			
		<pre>1. \$\beta_0 = -2256.36\$ and \$se(\beta_0)=13.0553\$ 2. \$\beta_1 = 7756.43\$ and \$se(\beta_1)=14.0666\$</pre>			
	In [18]:	-2256.36/13.0553 7756.43 /14.0666			
	Out[18]:	551.4075896094295			
		We want to fit a model for price which will be function of carat and cut Price = $\delta_{\rm beta}$			

And similarly, if you just take 7.56 divided by a standard error then you will get the t value is here 551. So, that is how the t value is being calculated and p value is calculated from the t distribution. The model now we want to fit another model, we want to fit say not only carat as a function of carat price as a function of carat, but we want to also fit the function of cut the second feature which is a categorical variable or string variable.

Now, how what model that will be. So, the model that will be is something like this. So, Price equal to beta naught. So, before that I want to write that we want to fit a model which fit a model for price which will be function of price which will be function of carat and cut.

(Refer Slide Time: 21:00)

So, now if you run it so, ok.

(Refer Slide Time: 21:05)

Let me just have a it was here. So, in fact, one thing we can do just to make sure that this price is actually coming from data it is a variable you can just put it like this.

(Refer Slide Time: 21:22)

And then it will be you know termed as Price ok.

(Refer Slide Time: 21:32)

Next is all we can say capital P this is capital C and this is capital C. Now, 'Price' is a function of beta naught plus beta 1 times 'Carat' maybe we just said like this plus beta 2 times Cut.

(Refer Slide Time: 22:16)

So, this is what I actually want to fit. So, ok we can do that. So, we will fit a second model. So, model 2 all you have to do you have to just add the end plus Cut and model 2 is this, but you see within Cut there are different values are there, good, very good, premium and ideal. There are you know four different values are coming actually there are five values of Cut fair, Good, Very Good and Premium and Ideal.

(Refer Slide Time: 23:09)

So, what kind of model that is actually fitting? What it is fitting is it is indicator function of Cut equals to 'Good' plus beta 3 times indicator function for 'Very Good' plus beta 4 indicator function for 'Premium' plus beta 5 indicator function for 'Ideal' indicator function or you can say the one hot encoding or what dummy variable for each stream you are creating a you know indicator functions ok.

(Refer Slide Time: 24:23)

So, this will be a varepsilon ok. So, this is the model actually you are fitting. So, you have intercept then 1 2 3 4 5. So, six total six one intercept carried 1 2 3 4 good, very good, premium and 1 2 3 4 5 6 1 2 3 4 5 6 yeah there are six coefficient is being are being estimated beta naught beta 1, beta 2, beta 3, beta 4 and beta 5. So, there are six total six coefficient have been estimated.

Now, if suppose now this is the model these are the coefficient of the model these are the standard error. So, if you divide the standard error with by the coefficient by the standard error you get the 9, t value you can see the t values are very very large t values are very very small almost 0 it is less than you know point after 100 zeros 1, this is these are the 95 percent confidence intervals.

So, none of them include 0 so; that means, these all coefficients are have a significant effect on price. So, we are not going to I mean this is that is what the statistical analysis says. Now, after fitting the model what we are interested in for a particular new diamond can we estimate the expected price. For a new diamond ok sorry about that I think I just made a mistake ok yeah. So, this is fine and now this is the part I have to make markdown ok.

(Refer Slide Time: 26:23)

Bookmarks	a a a a Don M	Chance Ins., FIT CCNA	Fill Sourish's Boo	Mark 🙆 Finance i	Research N	Gmail 🧕 Ma	os 👼 News 隆	Translate					
	File Edit	View Insert C	ell Kernel	Widgets	Help				Trusted	∳ J	ulia 1.8.2	0	
	B + × Ø	h 🖪 🛧 y 🕨	Bun 🔳 C	Markdowr		a M							
	Tn (201)	model2 = l=(8)	Dula (Pric	o ~ Carat +	Cut) dia	mondel							
	III [20].	model2 - im(ei	adia (riic	e carac i	cuc),uia	lionas),							
		t64}} Price - 1 + Car Coefficients:	at + Cut Coef.	Std. Error	t	Pr(> t)	Lower 95%	Upper 95%					
		(Intercent)	=3875.47	40.4082	-95.91	<1e=99	=3954.67	=3796.27					
		Carat	7871.08	13.9796	563.04	<1e-99	7843.68	7898.48					
		Cut: Good	1120.33	43.4992	25.76	<1e-99	1035.07	1205.59					
		Cut: Very Good	1510.14	40.2401	37.53	<1e-99	1431.26	1589.01					
		Cut: Premium	1439.08	39.8653	36.10	<1e-99	1360.94	1517.21					
		Cut: Ideal	1800.92	39.3444	45.77	<1e-99	1723.81	1878.04					
		For a new diamo	nd of 2 ca	rats with pr	emium cu	t can we e	stimate the	expected j	orice?				

For a new diamond for a new diamond with who diamond of 2 carats 2 carats and with premium cut can be estimate the expected price. So, suppose this is the question that we are interested, this is a new diamond which is not part of your diamond data set.

Now, given you have trained this model, you have fitted this model, now given this model you want to estimate the expected price of this new diamond which is of 2 carats and

premium cut so; that means, I can say 'carat' equals to 2 and 'cut' equals to Premium ok. Then what is the expected price? This is what my goal is from the model can we do that.

(Refer Slide Time: 28:03)

File Edit	view Insert Cell Kernel Wi	idgets Help				Trusted	🖋 🛛 Juli	ia 1.8.2 O
B + x (Run ■ C → COEL. Stu.	Markdown V	■ <u> </u> r±(~ ↓)	TOMET 27.9	offer 270			
	(Intercept) -3875.47 4 Carat 7871.08 1 Cut: Good 1120.33 4 Cut: Very Good 1510.14 4	40.4082 -95.91 13.9796 563.04 13.4992 25.76 10.2401 37.53	<1e-99 <1e-99 <1e-99 <1e-99	-3954.67 7843.68 1035.07 1431.26	-3796.27 7898.48 1205.59 1589.01			
	Cut: Premium 1439.08 3 Cut: Ideal 1800.92 3	89.8653 36.10 89.3444 45.77	<1e-99 <1e-99	1360.94 1723.81	1517.21 1878.04			
	For a new diamond of 2 carats with pren carat = 2 and cut == Premium 1	nium cut can we est then what is expecte	imate the expe	cted price?				
In [21]:	-3875.47 + 7871.08 * 2 + 1439.	08 *1						
Out[21]:	13305.77							
	### Let's cross check some c	concepts of OL	S method					

So, the first is. So, if we just plug in this so in fact, this is my whatever the beta naught this is my first value let me just copy this is my beta naught then plus beta 1. So, this is the beta 1 times carat plus beta 1 times carat equal to 2. Now, is it a good no so; that means, this is 0 you look at the model this is the model.

Since, it is not good so, it will be 0. So, 0 times better to whatever the value is 0. Very Good no so, this is 0. Premium yes, it is 1, if it is premium it is 1. So, beta 4 beta Premium value is 1439.08 plus 1439 times 1 ok. So, now if I run it so, 13305.77 is the price expected price I am not saying it will be the price.

So, because if you look into this so, 2 so, 13 is somewhere here part of this 13000 is somewhere here sorry somewhere here. So, it can be anywhere the range is very large you can see, but at least you can get some kind of expected price to be in that region. Now, we will take a little bit shift and we will go to some cross check of OLS method. So, let me do let us cross check some concepts of OLS method ok.

(Refer Slide Time: 30:11)

→ C (Iocalhost:8888/not	ebooks/Ur	ntitled3.ip	ynb?keri	nel_nam	ie=julia-	1.8					0	101	¥ ₹	C	ξX (8 🕈	65	f	*	1
ookmarks 🕻	3 8 8 9 Don N	/ Chance In	s 🗎 C	CNA 🗎] Sourist	h's Bookh	Mark 🔇 Fin	ince Research	M Gmail	💡 Maps	💏 News	🔓 Tr	anslate								
	File Edit	View	Insert	Ce	II K	Kernel	Widgets	Help						Tr	usted	1	Julia	1.8.2	0		
	B + % 4	8 6	↑ ↓	ÞF	Run	C	₩ Code	v		t											
		Let's	cross	che	ck so	me c	concepts	of OLS	method												
	In [22]:	х = т х	nodelma	trix(model	2)															
	Out[22]:	53940 1.0 1.0 1.0	0.23 0.21 0.23 0.21	rix{F 0.0 0.0 1.0	loat6 0.0 0.0 0.0	4}: 0.0 1.0 0.0	1.0 0.0 0.0														
		1.0 1.0 1.0	0.29 0.31 0.24 0.24	0.0 1.0 0.0	0.0	1.0 0.0 0.0	0.0 0.0 0.0														
		1.0 1.0 1.0	0.26 0.22 0.23	0.0	1.0 0.0 1.0	0.0	0.0 0.D 0.0														
		1.0 1.0 1.0	0.3 0.23 0.22	1.0 0.0 0.0	0.0	0.0 0.0 1.0	0.0 1.0 0.0														
		1.0 1.0 1.0	0.79 0.71 0.71	0.0 0.0 0.0	0.0	1.0 0.0 1.0	0.0 1.0 0.0														
		1.0 1.0 1.0	0.71 0.7 0.7	0.0 0.0 0.0	0.0 1.0 1.0	1.0 0.0 0.0	0.0 0.0 0.0														0
		1.0	0.72	0.0	0.0	1.0	0.0														NP

So, remember that I fit this model as model 2. So, what I am going to do, I am going to extract the design matrix. So, I can write each model all these model as a y equal to x beta plus model x beta plus epsilon. So, what I can do I can just say model matrix of model 2 and write it as a X ok let me just see.

(Refer Slide Time: 30:55)

← → C
★ Bookmarks © © © O Do M Ohancetes E CML E South's BookMark P France Research M Gml P Mass P member Transite File Edit Vew Insert Cell Kernel Widgets Help Transite E + 9x O D 0.0 0.0 0.0 0.0 1.0 1.0 0.22 0.0 0.0 0.0 0.0 1.0
File Edit View Insert Cell Kernel Widgets Help Trusted Julia 1.82 O B + 9c 0
B + % ? %
1.0 0.23 0.0 0.0 0.0 1.0 1.0 0.22 0.0 0.0 1.0 0.0 1.0 0.79 0.0 0.0 1.0 0.0 1.0 0.71 0.0 0.0 1.0 0.0 1.0 0.71 0.0 0.0 1.0 0.0 1.0 0.71 0.0 0.0 1.0 0.0 1.0 0.7 0.0 1.0 0.0 1.0 1.0 0.7 0.0 1.0 0.0 1.0 1.0 0.72 0.0 0.0 1.0 0.0 1.0 0.72 1.0 0.0 1.0 1.0 0.72 1.0 0.0 0.0 1.0 0.7 0.0 1.0 0.0 1.0 0.72 1.0 0.0 0.0 1.0 0.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{bmatrix} i & i & i \\ 1 & 0 & 0.79 & 0.0 & 0.0 & 1.0 \\ 1 & 0 & 0.71 & 0.0 & 0.0 & 1.0 \\ 1 & 0 & 0.71 & 0.0 & 0.0 & 1.0 \\ 1 & 0 & 0.71 & 0.0 & 0.0 & 1.0 & 0.0 \\ 1 & 0 & 0.71 & 0.0 & 0.0 & 1.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 1.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 1.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 1.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.72 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0.7 & 0.0 & 0.0 & 0.0 \\ 1 & 0 & 0 & 0.0 & 0.0 \\ 1 & 0 & 0 & 0.0 & 0.0 \\ 1 & 0 & 0 & 0.0 & 0.0 \\ 1 & 0 & 0 & 0.0 & 0.0 \\ 1 & 0 & 0 & 0.0 & 0.0 \\ 1 & 0 & 0 & 0.0 & 0.0 \\ 1 & 0 & 0 & 0 & 0.0 \\ 1 & 0 & 0 & 0 & 0 & 0.0 \\ 1 & 0 & 0 & 0 & 0 & 0.0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0.0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1.0 0.72 1.0 0.0 0.0 0.0 1.0 0.72 1.0 0.0 0.0 0.0
1.0 0.7 0.0 1.0 0.0 0.0
1.0 0.86 0.0 0.0 1.0 0.0
1.0 0.75 0.0 0.0 0.0 1.0
<pre>In (23): y = model_response(model2)</pre>
Out[23]: 53940-element Vector{Float64}:
326.0
326.0
327.0
334.0
335.0
336.0
336.0
337.0 NPTEL

So, this is my X matrix it has 53940 samples with 6 columns, now first column are all 1s because it corresponds to the intercept, second column are all corresponds to the values of carat ok, the third column corresponds to the cut equal to good wherever it got good it was it is there is 1 other rest of the places it 0.

The fourth column is corresponds to very good wherever it got very good it gives 1 rest of the places it gives 0 and similarly it is premium wherever it got premium it is says 1 rest of the places it is 0. If any value with the ideal condition then it will say 1 and rest of the places will be 0. So, that is how one hot encoding works or idea dummy variable creation or indicator variable creation works.

(Refer Slide Time: 32:33)

So, this is my design matrix ok. So, once I have the design matrix what I will require next thing is the response variable. So, y equal to model_response ok. So, these are my prices of 53940 prices ok.

(Refer Slide Time: 32:49)

		Irusted /	Julia 1.8.2	0
🖹 🕇 🗶 (
Tn (241;	2757.0 OLS Estimator: $\hat{\beta} = (X^T X)^{-1} X^T y$			
Out[24]:	64 Matrix(Float64): 53840.0 43040.9 4906.0 12082.0 13791.0 21551.0 43040.9 4666.1 4166.1 9742.7 12200.9 15146.8 4906.0 4166.1 9742.7 0.0 0.0 0.0 12082.0 9742.7 0.0 12082.0 0.0 0.0 13791.0 12300.9 0.0 0.0 0.0 13791.0 12300.9 0.0 0.0 13791.0 12301.9 0.0 0.0 13791.0 12551.0 15146.8 0.0 0.0 0.0 21551.0 15146.8 0.0 0.0 0.0 21551.0 1544.8 0.0 0.0 0.0 21551.0 1546.8 0.0 0.0 0.0 21551.0 146.8 0.0 0.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0 1262.0			
In [25]:	(X [*] X)^(-1)			
Out[25]:	6*6 Matrix(Float64): 0.0001474 -8.9427e-5 -0.0006387440.000634916 -0.000651841 =8.94927e-5 8.55459e-5 1.68848e-5 1.31896e-5 2.93879e-5 -0.000638744 1.68484e-5 0.00082376 0.000623716 0.000625902 -0.000643916 1.31896e-5 0.000623716 0.00065566 0.000625646 -0.000634916 1.23896e-5 0.000623716 0.00065566 0.000625646 -0.000654916 1.23896e-5 0.000625716 0.00065566 0.000625646			6

Now, what is the OLS estimator, the OLS Estimator is beta hat beta equals to X transpose X inverse X transpose y ok. So, this is the OLS estimator. So, what I am going to do first I am going to calculate X transpose X. So, I have already have X. So, I am going to calculate X transpose X. So, this is my X transpose X matrix.

So, you can see that you know there are about 53940 samples the first will be n then out of these samples the small block represents how many of them were good, how many of them were very good, how many of them were you know premium and how many of them were ideal. So, if you add them up I think you will get 53940.

Now, if you just say X transpose X inverse say minus 1. So, you get the inverse of X transpose X matrix and you can see this it is very intuitive the way you write the you know write it on your notebook, the way you write it in the you know in the blackboard almost you

can codify it you can code write your Julia code almost on the same way the way we have written it almost in the same way and then I am going to calculate X transpose y.

(Refer Slide Time: 35:14)

	Iocalhost:8888/note	poks/Untitled3.ipynb?kernel_name=julia-1.8 Q 🙆	文 立 6 数 🗅 🕹 🛍	li 🖇 🗆 🔞
Bookmarks (3 3 3 Don M	hance Ins 🗎 CCNA 🗎 Sourish's BookMark 🔇 Finance Research M Gmail 🍳 Maps 👩 News 🍇 Translate		
	File Edit	/iew Insert Cell Kernel Widgets Help	Trusted 🖋 Julia 1.8.2	0
	B + × 4	🗈 🛧 🖌 🎉 n 🔳 C 🗰 Code 🗸 🖂 🕍		
		-8.94927e-5 8.55459e-5 1.68484e-5 1.31896e-5 2.93679e-5 -0.0063374 1.68484e-5 0.00082228 0.000623716 0.000625902 -0.00064374 2.05101e-5 0.000623176 0.000622360 0.000622492 -0.00064314 1.31896e-5 0.000623176 0.00062563 0.000625646 -0.000651841 2.93679e-5 0.000626902 0.000625646 0.000627602		
	In [26]:	X ' Y		
	Out[26]:	S-element Vector(Float64): 2.1213517e8 2.623741425495998e8 1.9275009e7 4.8107632e7 6.3221498e7 7.4513487e7		
	In [27]:	$(X, X) \cup (-1) * X, A$		
	Out[27]:	5-element Vector{Float64}: -3875.4666997071487 7871.082133925823 1120.3318525509217 1510.135408513707 -490.0731411469		

So, these are my X transpose y elements and now I am going to calculate X transpose X inverse X transpose y. So, X transpose X inverse times X transpose y. So, if you just. So, these are the elements and then from the model 2 now remember that if I go up there here is I have the model I have fitted model.

(Refer Slide Time: 35:58)

From the fitted model if I just extract the coefficients it will give me the coefficient values. Now, carefully you check all these values are almost same actually up to 8 or 9 decimal places they are almost same ok.

So, Im when we are calling Im here with formula, price, carat and cut they are essentially what it is doing this particular entire call creating the X matrix creating the Y matrix and then running this ordinary least square estimation and estimating the coefficient values, along with it is also estimating the standard error also estimating the t values p values and the 95 percent confidence interval.

So, now, you can see that how to do you know typical fit a simple regression analysis model using Julia.

Thank you very much let us meet in the next video.