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Welcome back to the part B of lecture 4 and now we are going to start Sampling Distribution

of Regression Coefficient. However, before we start sampling distribution of regression

coefficient we should little bit discuss about what is sampling distribution. If you already

know what is sampling distribution my recommendation is you can skip this part and but if

you were not so, sure if you are aware of what is sampling distribution then please continue

watching this video.
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So, what we will do? We will try to understand what is the sampling distribution. So,

sampling distribution is an very interesting concept suppose you suppose we want to; we want

to estimate the average body mass index of the students of the students in a large institution

intuitions ok.

Now, what we will do? We will typically what we will do we will draw a random sample of

size n. So, from that large institution draw random sample of size n ok. So, you have probably

this kind of data set like maybe height and weight and ID maybe this is first sample whatever

the height whatever the weight this is the second sample second drawn from the you know

from the population is and the height and weight of the second sample.

And then nth sample height and weight and using height and weight we can calculate the

body mass index say suppose this is b 1 b 2 and b n. What we are interested in to calculate the

average you know body mass index. So, we are we are interested in average body mass index

of the students.

So, we can simply take b bar the sample mean of this values ok this body mass indices 1 by n

summation b i i equal to 1 to n. Now b bar is sample average of body mass intakes. So, we

want to estimate.
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So, we want to estimate the margin of error; margin of error for of b bar sample mean. Now,

what we will do? We will sort of a do a thought experiment ok we will do a thought

experiment we will do a thought experiment ok. So, what is thought experiment? The thought

experiment is suppose you have infinite resources suppose you have infinite resources lot of

resources ok not infinite I would say lot of resources.

You hire you we hire maybe 100 M many surveyors each surveyors M maybe 50 ok each

surveyor go to the same institute and randomly draw n samples ok. Now randomly draw n

samples what happens is if previously in real life we will have only one sample one data set

that is it and we have to do all the analysis based on this one data set.
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Now, what we will do? What we will do? We have M many data set we have M many data

set the first D 1 D 2 D M and each data set has computed height weight and body mass index

each data set they have collected height and weight and from there they calculated the body

mass index.

Now, what you can do you instead of one data set you have M many data set or M if M is 50

they have 50 different data set. So, now, you can calculate the sample mean from the data set

1, sample mean of the body mass index from data set 2, sample mean from the body mass

index from the Mth data set.

Remember that each of them have n samples ok. So, now, you have this b 1 bar, b 2 bar, b m

bar now this vector you can take and draw a histogram of body mass index. So, this histogram



this histogram is the histogram of essentially b bars. So, this histogram tells us how the

distribution of sample average looks like.

So, b bar this distribution tells us how probability distribution probability distribution of

sample average looks like ok. So, this is a interesting concept why? Because you can say that

ok now since the sampling distribution of b bars looks like this.So, we can say that maybe

original average b bar B is somewhere the body mass index expected body mass index is

somewhere here.

And with the some you know confidence interval like you can give a sort of a range that most

likely this is where the true value will looks be there and if you get a b bar here then it is

likely that it will be far away from the. So, you have a sense that whether a sample mean is

too far away or reasonably close. So, that kind of probabilistic statement now you can make. 

So, sampling distribution enable us to make a probabilistic statement about our estimation it

gives us to calculate what kind of margin of error we can expect.
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So, sampling distribution sampling distribution helps us to identify to measure to measure

what kind of margin of error margin of error you can expect. Now given this thing if this is

the thing now this was only for sample mean, but in reality we cannot have m many surveyors

this is too much this is remember that this is a thought experiment.

This was not a you know real life in a situation, we cannot have M many samples we all we

have in reality we have this one sample this one sample that set we do not have more than one

sample. So, we have to calculate this margin of error using the whatever one sample that we

have.

So, turns out that few results few results if you assume if we assume that b 1, b 2 dot dot dot b

n they follow normal distribution with some mean mu and some variance sigma square then b



bar which is sample mean 1 by n summation b i will follow normal distribution with mean

mu and variance sigma square by n.

So, this is the sampling distribution of b bar will follow normal distribution with mean mu

and variance sigma square by n. So, this is the first result and this is result 1.
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And then there is another very interesting result 2 that if we assume; if we assume b 1, b 2,

dot dot dot b n they are independent and identically distributed some distribution with some

pdf which with some mean expectation of b 1 is mu and variance of b 1 is sigma square ok.

Then if n goes to infinity; that means, if you are for large n for large n the large sample size,

the b bar will approximately follow normal distribution with mu and sigma square by n. So,

what does it mean? It means, basically your BMI can follow any other distribution it can



follow say lognormal distribution or some gamma distribution does not matter, I am saying it

follow any distribution with the proper probability density function pdf or probability

function it may follow binomial distribution all you know.

Some proper probability distribution it follows with finite mean and finite variance ok. Finite

mean and finite variance then if you ensure you have large enough sample then the sample

mean the sampling distribution of sample mean will approximately follow normal distribution

and this is a huge result. 

This is a huge result and this result is known as central limit theorem this result is known as

central limit theorem ok. This is a huge result in a sense if you know if you even if you do not

have to assume any distribution on the f b or like you know if b could be any distribution, it

could be binomial or (Refer Time: 16:42) or you know you can it can be you know gamma

lognormal anything any distribution.

But still the all you have to ensure that the sample size is n and then all you have to do is b is

following the sample mean b bar still follow will approximately follow normal distribution

and this result is known central limit theorem. Now, how can we conceptualize the sampling

distribution of regression coefficient?
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So, we have the data like this height weight then suppose this is the data that we have 1, 2 up

to n we have h 1 w 1, h 2 w 2, dot dot dot h n w n and we want to say from the height you

want to say something about the weight. Suppose, this is the data set that we have. So, we

want to fit a straight line like this. So, we want to fit a wt as a function of say beta naught plus

beta 1 height plus some error ok. 

Now what we can think of is we can use this data set using OLS estimator we can compute

the beta hat as beta naught hat beta 1 hat ok. And then what we can do? We can think of again

do the thought experiment we can do a thought experiment ok.
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In the thought experiment what we can do? We can have m many samples. So, D 1 it is like

height and weight, then D 2 another data set another surveyor go to the field and collect the

samples height and weight and Mth surveyor go to the field and collect the. Now, what we

can do from each thing we can compute the beta hat beta 2 hat. So, beta hat is beta 11 hat beta

12 hat. 

Now beta 2 hat is beta 21 hat, beta 22 hat from the Mth data set we can compute the Mth M.

So, beta M 1 hat, beta M 2 hat. Now, what we can do? We can just plot these think of this

guys as here it is beta 1 hat, here it is beta 2 hat and we can if we just plot this guys.
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So, we have essentially a two dimensional distribution and this two dimensional distribution

is essentially the joint distribution of sampling distribution of beta hat ok. This is the

sampling distribution of beta hat if we just take the beta 1 hat, the intercept for the intercept.

So, ok we have used a 0 here. So, we can use 0 1 0 1 and 0 1.
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So, here it will be 0 and here it will be 1. So, now, if we just intercept beta 0 hat. So, all we

have beta 0 1 hat, beta 0 2 hat dot dot dot beta 0 M hat. So, I from m data set I have M

intercepts we can just draw the histogram and this distribution will be the sampling

distribution of intercept. So, this is how the distribution will look like the sampling

distribution of beta intercept beta 0 hat and this will be the sampling distribution of the slope.

So, that is how we are going to discuss the this is the sampling distribution of regression

coefficient. 
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Now we will go back and we will start with the regression analytics of part b.
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So, now, consider our standard linear model ok in the standard linear model what we have is

y equal to X beta plus epsilon the standard model that we have. And then where epsilon

follow normal 0 sigma square I n and n is greater than p. This is we always making sure that n

is greater than p because if n is not greater than p then the it is not a OLS estimator is not

going to be full rank. So, we will not have a proper estimate. So, this is required.

Now, this immediately implies y equal to X beta normal X beta sigma square I n. From here

we can we also know that least square estimator of beta hat is X transpose X inverse X

transpose y. So, the question is that ask yourself that what is the sampling distribution of beta

hat?
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So, my recommendation is you stop yourself, you pause your video for about 5 minutes try to

figure out what is the sampling distribution of regression coefficient or the sampling

distribution of beta hat in this case and see if the results match with my what I am going to

tell next.
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I hope you have find the results by now. So, what I am going to do? I am going to use this

result of multivariate Gaussian distribution or multivariate normal distribution. If you have a

vector of size p which follow p variant normal with mean vector mu and covariance matrix

sigma.

Now, you have a some coefficient matrix c which is of q cross p dimension then c times y

will give you a new variable z and this will still follow will follow q dimension normal with

mean c mu and variance c sigma c transpose. You can use this result to argue that the

sampling distribution of beta hat follow p variant normal with mean beta itself the true beta

and the covariance sigma squared X transpose X inverse how can you do that?

Now, you see beta hat is X transpose X inverse X transpose y correct? This X transpose X

you can treat it as a c. So, you can write beta hat as c times y then expectation of beta hat will



be. So, naturally beta hat will follow if you write beta hat to be c times y then you can write

beta hat follow some normal distribution here in this case it will be p variant normal with

some expectation of beta hat and variance of beta hat.

So, this will follow normal for sure you have to only figure out what is the expected value of

beta hat. Expected value of beta hat will be expected value of X transpose X inverse X

transpose y which is c. So, the c comes out then it will be X transpose X inverse X transpose

expected value of y.

Now, what is expected value of y? This is X beta this is X beta. So, I have X transpose X

inverse X transpose X beta. Now this is X transpose X this is X transpose X inverse. So, this

will yield a identity matrix. So, we left with beta. 
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Now you have to figure out you should figure out that how variance of beta hat will be sigma

squared X transpose X inverse. I am leaving it for you to figure out it is very simple all you

have to do just apply variant this you have to just apply this result that variance of c y is c

sigma c transpose.

If you apply this that will be good enough that will yield you this result sigma square X

transpose X inverse all right.
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Next how we are now taking the sampling distribution of beta naught and beta 1? So, we are

considering this model m p g as a function of beta naught plus beta 1 times weight plus

epsilon and we have figured out that beta hat follow in this case beta hat will be essentially

beta 1 hat and beta beta naught hat and beta 1 hat.



So, this will follow a bivariate normal with beta naught and beta 1 as mean with some sigma

square X transpose X inverse that you have to we have figured out last part of the lecture. So,

that is how. So, since it is a bivariate normal this is going to be the. So, on the x axis I have

put beta naught on the y axis I have put the beta 1 and the sampling distribution behaves like

this ok.
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Now, what I am going to do? I am just taking this same distribution and just including 0 in

this picture. So, previously you see my x axis was somewhere between 28 to 45 and minus 9

to minus 2 I am just expanding the x axis and y axis to include 0. So, now, I am it is from

minus 10 to 2 and it is around including may be minus 1 to 45.



So, you can see that this distribution is somewhere here. Now what we can think of this 95

percent of the probability mass for beta naught is somewhere in this region which is far from

0 here is 0 and 95 percent of the mass of beta naught actually going to be in this region.

Similarly, 95 percent of the mass of beta 1 is going to be in this region ok in minus 8 and

minus 6. So, that is how we now we can say that beta naught is far from 0 similarly beta 1 is

far from 0 it has a negative values very likely 95 percent probability may be 99 percent

probability that beta 1 is negative and it has a strong negative correlation.

Now, what is beta 1? Beta 1 is the slope of weight and miles per gallon ok so; that means, if I

am very confident that weight has a negative correlation with miles per gallon and because

beta 1 is most likely with 95 percent probability it is going to take negative value.
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This kind of probabilistic inference you can do with sampling distribution of regression

coefficient. Therefore, sampling distribution of regression coefficient is absolutely

foundationally fundamental for doing any statistical inference.
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So, now we have figured out that y equal to X beta plus epsilon and epsilon for normal 0

sigma square I n our OLS estimator is beta hat which X transpose X inverse X transpose y

and beta hat follow normal the sampling distribution of beta hat is normal p variant normal

with mean as beta itself that a coefficient itself with the sigma square and x transpose sigma

square times X transpose X inverse.

Now, residual sum of square RSS y minus X beta hat transpose times y minus X beta hat is

the residual sum of square and it is found that residual sum of square follow scaled chi



squared distribution scaled by sigma square and this is helpful because; that means, if I have

to do any statistical inference on sigma square; on sigma square.

Then we can use residual sum of square to do that residual if we consider residual sum of

square as a statistic a particular statistic see it involves only data x y x and beta hat and from

we know the distribution, the distribution is sigma square chi square with n minus p degrees

of freedom.

So, using this information we can do a statistical inference for sampling variance or residual

variance.
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Now an interesting thing that is how to do statistical inference for beta? So, for jth predictor

in this case what we will have? We have we know that beta j hat since beta j hat will follow



normal beta j and it will be like sigma square the ith element of X transpose X inverse the or

the jth element of the jth element of x transpose x inverse.

If we do that then essentially we can write beta j hat minus beta j sigma times square root of

X transpose X inverse j jth element will follow normal 0 1 and from chi squared distribution

we know that n minus p a square by sigma square will follow chi squared with n minus p

degrees of freedom. So, s square which is residual sum of square by n minus p what is it

implies? It implies expected value of residual sum of square by n minus p is equal to sigma

square. 

So, this means s square is an unbiased estimator of sigma square. So, s square is an unbiased

estimator of sigma square. So, this is an interesting result that we have.
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So, note that in the sampling distribution of beta hat the sigma square is unknown. Since

sigma square is unknown. So, we have to estimate 1one way to do that we estimate sigma

square by the corresponding unbiased estimator of sigma square s square which is residual

sum of square by n minus p.

So, if you estimate the with that then t divided by beta j hat minus beta j now if you now

estimate sigma by s, then this will this t statistic will follow t distribution with n minus p

degrees of freedom. So, where s is the standard error of the beta j hat. 
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Now we can do the test the null hypothesis beta j equal to 0 what we have to do? We have to

we are here we have to just put beta j equal to 0 and we will be all set. So, how we will do the

statistical inference?
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We will do in this way. So, how can we do that? So, all we have to do test the null hypothesis

X H naught beta j equal to 0 now what does it mean? If beta j equal to 0 that means, predictor

X j has no impact on the dependent variable y that is what it means alternate hypothesis is

beta j naught equal to 0 what is it means? It means, predictor X j has impact on y ok.

Now, under null hypothesis under the null hypothesis the test statistic will be beta j hat minus

0 divided by the standard error of the beta j hat.
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So, what we will do and that follow t n minus 1 and at 100 into 1 minus alpha percent level of

significance if the t observed is greater than t n minus p alpha or t observed is minus t n minus

p alpha then we reject the null hypothesis. So, that is how we run the statistical inference for

regression coefficient. 

So, another way of doing it is simply instead of instead of looking at the t value, we can look

into the P-value the P-value is the probability of obtaining the test result at least as extreme as

observed result assuming that the null hypothesis is correct. So, we can calculate the P-value

by multiplying probability of t greater than t observed under the null hypothesis by 2.

And then if the P-value is too small then we reject the null hypothesis otherwise we say we

fail to reject the null hypothesis.
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So, here is an example quick example are example that we have done. So, we run the my mt

cars data set beta mpg beta naught plus beta 1 weight and so, null hypothesis is beta 1 equal to

0 versus beta 1 non zero. So, beta 1 equal to 0 means, null hypothesis is saying that weight

does not have any effect on miles per gallon whereas, beta 1 non zero the alternative

hypothesis is saying that beta 1 non zero; that means, we do have weights do have effect on

the miles per gallon.

Now, the r if you run the r typically if you just run l m with m p g dollar weight with data

equal to m t cars mt cars you have to put it in some object say call it summary and then print

summary in sum if you run this two lines in r then you will give this you will get this output.

So, first is the estimate of the beta naught this is the estimate of the beta 1, this is the standard

error we calculated and estimate divided by the standard error will give you the t value. So,



for beta 1 you see the negative 9.559 is pretty small value and P-value is nearly 0 it is rounded

off to 0.

So, we can say that since the P-value is really small weight has we can we will reject null

hypothesis so; that means, weight has statistically significant effect on miles per gallon and

that make sense. So, if you the if the car is large, it has a lot of weight naturally it fuel

efficiency will be much less.
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Now, we look into another model. So, does weight and or horsepower two predictor model

has statistically significant effect on miles per gallon. So, previously we were doing this we

were trying this model sorry yeah this was my model we were trying this model.
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Now we want beta naught plus beta 1 weight along with we want horsepower as the second

independent variable and we run the same way we run the r and we get this estimates this

result. So, now you can; obviously, because your model is different OLS will give you

slightly different estimates. 

So, previously the estimates of beta 1 was negative 5.344 now it is negative 3.878. So, the

estimate has changed standard error if you look into the standard error standard error has was

previously when you I have only one independent variable only weight that time it was 0559

now, it is 0.633. 

So, the standard error has gone up ok, but still the t value is quite small for both weight and

horsepower p values are also very small. So, weight has still have a significant effect on miles



per gallon ok it has still have a significant effect, but what we are seeing that standard error of

regression coefficient for weight or the standard error for beta 1 has slightly gone up.
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So, both h p statistically significant and weight is statistically significant.
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So, what are the interesting thing? Now I am combining both the model ok. So, the first

model is only with weight and miles per gallon and the second model is weight and

horsepower with miles per gallon. So, the model 1 is a 2D model and model 2 is a 3D model

are they comparable this is the first question we are going to ask. Standard error of beta 1 hat

in model 2 is higher than the model 1. 

So, you can see again here the standard error of beta 1 hat in the model 1 was 0.559 and it has

gone up 0.633 why it has so? We will discuss these issues later these are very important

issues and for now we are stopping here.
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So, we will discuss how to check the model assumptions because if model assumptions does

not hold true then any inference you do technically those are not valid. So, we will stop here

now we will do some hands on.

Thank you very much, see you in next video.


