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Hello and welcome to the next of the lectures in this 12 week of the course titled

Approximate Reasoning using Fuzzy Set Theory, a course offered over the NPTEL platform.

In this lecture, we will look at one particular functional equation that of the Law of

Importation and see how it enables us to obtain a computationally efficient procedure in

getting an output from the compositional rule of inference.
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Let us look a begin by looking at fuzzy inference systems themselves. In the case of a single

SISO rule, we have this A implies B; this is the rule that is given to us. If you are using an

FRI all we need is a function F to relate the antecedent to the consequents and obtain a

relation and a composition operator. In the case of an SBR scheme we need a matching

function and also a modification function.

If you have multiple SISO rules, then, we also need an aggregation function G in the case of

an FRI and also either the FITA or the FATI inference strategy. Whereas, in the case of an

SBR, we will only need the aggregation function G, as extra compared to having a single

SISO.
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Now, if you have a single MISO rule; that means, rule where you have p dimensional inputs p

a single rule where, we have p antecedents relating to a single consequents. In the case of an

FRI, we have this A bar indicating a multi-dimensional input, we only need a function F to

relate the antecedent multi-dimensional antecedent to the consequents and a composition

operator.

Of course, we need an antecedent combiner K to combine all of them to get a single relation.

In the case of an SBR again, we have this matching and modification function of course, we

also need the antecedent combiner. In the case of multiple MISO rules, not only do we need

the antecedent combiner we also need the FITA, FATI inference strategy and the aggregation

function G. And in the case of SBR, we need the aggregation function G and also the

antecedent combiner k.
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Let us look at some of the functional equations involving fuzzy implications. Let us look at

the basic families of implications. The S, N family, which is S, N-implication we know about

the R-implications which we have discussed at length almost for more than half of this

course.
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If you look at the functional equations, we have seen a couple of them in the previous lecture;

which is the antecedent and consequents distributivity. But these are only two such of course,

law of importation is one. But there are also many other functional equations involving fuzzy

implications.

For instance, x implies y is equivalent to negation y implying negation x. This is the

contrapositive symmetry. So, if we could also think of this as a functional equation. This is

another functional equation I of x comma N x is equal to N x and this is called the iterative

functional equation I of x, y is equal to I of x I of I x, y. This is the T-conditionality that we

have seen this is called the hypothetical syllogism.

We have kept it in the almost logical format; because we could put I for the arrow and T for

the ampersand here, but this is kept in this form so that we could see what exactly it is doing.

It is essentially chaining inferences, p in implies q and q implies r implies p implies r. So, in

some sense it is a transitivity property. It is just what is called as a hypothetical syllogisming

usual logic setting.

There is also this inequality I of x, y less than or equal to x plus epsilon y plus epsilon for

admissible epsilons, this is called the specialty property. So, we have these many different

functional equations involving fuzzy implications and often another binary operation or unary

operation.
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Of course, we also have the law of importation, which we have seen in this. And, we have

seen in the previous lecture that for the major class of implications, we see that all of them do

satisfy law of importation.

(Refer Slide Time: 05:07)

And we have in fact, characterized the T-norm with respect to which they will satisfy the law

of importation. Now, why do we need to study such functional equations? Well, in the

previous lecture we have seen, it allows us to generalize many settings especially the setting



of inference mechanism itself by allowing the implications to come from families outside of

the R-implication.

But that is not the only utility of studying such functional equations. For instance, it is well

known that distributivity equations, if a implication has distributivity property; then in the

inference scheme that such an implication is being used it can help in complexity or rule

reduction. In the case of contrapositive symmetry as we all know, it is very important in

deductive systems and formal methods of group.

Where, you want to show some result instead of showing A implies B you end up showing

negation B implies negation A, the contrapositivity of the original statement. This is another

functional equation which ensures that the Sinha-Dougherty axioms of subsethood measure

hood; subsethood measure which are used in image processing will be valid.

So, an implication satisfying this functional equation is useful there. Of course, we know

about T-conditionality, how it is important in generalized modest components of an inference

scheme, especially when we discussed about a single SISO rule. This hypothetical syllogism

is again useful and chaining syllogisms is fuzzy systems. And, this inequality which is called

the special inequality such implications are called special fuzzy implications. They are shown

to be useful in some data mining applications.
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Now, the question is, what about the law of importation? Is it also useful somewhere? Of

course we have seen already, in many places where this is playing a role in terms of

monotonicity, robustness, interpolativity or continuity; however, now we are asking this

question from the point of view of computational efficiency.

We can always take solace in this court of Nikolai Lobachevsky. He said there is no branch of

mathematics; however, abstract which may not some day be applied to phenomena of the real

world. So, that means, law of importation could also serve some purpose not just in the

theoretical or the correctness part of it, maybe also in the computational aspects of a fuzzy

inference system. And that is what we will see in the rest of this lecture.
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Let us look at inferencing in CRIs. Of course, we have seen this many times over. So, if you

have a rule of this form, if the temperature is low then the fan speed is slow and if a given

temperature is average, we want to obtain an output fan speed is medium. So, typically the

rule is captured in form of a relation and given an A dash which is the input you obtain B

dash by composing A dash with R.

(Refer Slide Time: 08:01)

Now, we have seen examples of it before, but once more because it is the numerical aspects

of it which will highlight the issue that we are going to discuss now. So, given let us assume



that A and B the antecedent and the consequents are given as follows, as these fuzzy sets. We

use the girdle implication to relate them. So, the relation would look like this.
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Now, if you are given an input A dash, all we need to do is use the sup-T composition which

in this case let us assume some the usual minimum T-norm. So, then what we obtained is this

B dash. So, we are using star to be the minimum T-norm.
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Now, what happens in the case of multi-input single-output rules? So, let us construct just one

of them. We have seen this before too, that we need an antecedent combiner and we do not

then deal only with 2-D matrices, but also 3-dimensional matrices if you have two inputs.

So, the temperature is low and the humidity is high, then speed is fast. So, now, this is

something like you have a fuzzy set A F of x 1; B from F of x 2 and C from F of y. So, x or

we could also take the domain to be x, y and z. So, normally what we do is, we take the

cartesian product of A and B using a T-norm and then apply the function F, which is typically

an implication to obtain the relation of this particular rule.

(Refer Slide Time: 09:30)

Let us see an example we have seen this before to. How to do this inference? If A is given

like this, B and C are given like this. And, let us use the implication for the F to relate the

combined antecedent to the single consequents and let us use the minimum T-norm for

combining A and B into a single relation.

So, T M of A, B is essentially once again we are using the outer product concepts, 0.9 and 1,

it is 0.9, 1 10 0.6, it is 0.9 0.6 0.9 and 0.8 it is 0.8. The rest of the matrix can be filled like

this. Now, the input the antecedent themselves are multi-dimensional. So, instead of having a

single row vector, we are already having a 2-D matrix. Now, this is what is going to play a

role in giving us a relation with respect to the consequents C.



So, we have seen that this typically leads to a 3-dimensional matrix or in this case 3, 2 D

matrices because, C has 3 elements. And, we have seen that this can be split down into R of z

i for each z i where z i is 0.1, z 1 is 0.1, z 2 is 0.1 again and z 2 z 3 is 0.2.

(Refer Slide Time: 10:47)

So, how do you obtain this? Once again, we have seen this that we take every element of T M

of A, B and then use the implication of 0.1. So, 0.9 and 0.1 is we are using the Lukasiewicz

implication each one of them and this is how we are obtaining the implication, the values of

the matrix.

Note that when you use the Lukasiewicz implication. So, this is 1 minus x plus y or 1

minimum of these 2. So, when you take 0.9 and 0.1, it is 1 minus 0.9 plus 0.1 which is 0.2

when we use 0.6 and 0.1 it is 1 minus 0.6 0.1 which is 0.5. So, that is how we obtain this

matrix. In the case of, so, z 1 and z 2 are 0.1. So, we obtain the same relation matrix and z 3

is 0.2. So, we obtain a different one. In some sense translated by another 0.1.

So, additional 0.1 comes into picture. Because Lukasiewicz is implication is 1 minus x plus y.

Now, so, we have these 3 2-D matrices. Now, given an input A dash B dash, let us assume

them to be singleton, then what we do is once again, we combine them using the antecedent

combiner which in this case it is a it is a minimum T-norm.

We obtain this and then use this to compose this 2-D matrix with the 3-D matrix. If you

remember the analyzer which we have given, we have 3 sheets 2-D sheets on which these



matrices are and the steam of A dash B dash is another sheet. So, we keep that matrix on each

of the sheets and then in fact do the component wise min and then take the max.

Clearly only this element will come out because the rest of them will be 0. So, 1 here. So,

only this component will come out 0.5 0.5 and 0.6. This is what we have seen, right. This is

how we do inferencing in CRI when we have a single MISO rule. Clearly, we understand that

we have multiple SISO, MISO rules then it is getting even more cumbersome.
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Some of the usually cited drawbacks of CRI follows. Firstly, the computational complexity.

Of course, it depends on the choice of operators employed, but let us look at it in the terms of

number of operations required. So, now, we have a p dimensional input and a single

consequents, single output. If you assume that each of the X i is of cardinal and that is the

discretization granularly p consider.

Now, first we need to combine these antecedents. Remember, if we had we in the previous

case we had 2-Dimensional inputs A 1, A 2 or A and B. So, we got a 2-D matrix. So, now, if

there are m 1 components of A 1 and m 2 components are A 2 then it is m 1 cross m 2. Those

many components have to be obtained to make the 2-D matrix. So, if you consider this; that

means, we need m means the product of this m 1, m 2, m 3 1 m p.

So, many operations to obtain the matrix itself this is the antecedent. The next to obtain the

relation between this combined antecedents and the consequents we need another set. So,



total number of operations that are required is this. So, Cartesian product of 1 to p plus 1 such

operations. Now, once again for the inference itself, given an input A 1 dash, A 2 dash A p

dash. Once, again, these things have to be combined which means these many operations i i is

equal to 1 to p and m i operations.

And finally, for the composition itself, we need the square of that operation. So, if you

assume that all the m is are same say is equal to m, then essentially what we are looking at is

the order is given by the largest of this. So, it is essentially here you have m power p the

whole square. So, it is order of m power 2 p.

So, those many operations have to be performed. So, p is the dimensionality m is the

discretization, constantly on each domain how many points of discretization that

discretization granularity that we are making use of.
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Now, this with respect to the computational complexity. What about the space complexity?

How much we need to use as storage? So, we need to store p plus 1 dimensional matrices for

every fuzzy if then rule. So, if you assume that the cardinality of X is m and Y n, Z is l. So,

for the moment let us consider only two input one output case. So, m n Z and then, so we

have seen that to obtain the rule the relation of the rule.

We need a 3-D matrix which will consist of m into n into l those many elements, components

and towards doing the inferencing first we need to combine the facts A dash B dash which is



again a 2-D matrix with m cross n elements. And, we need l to store the consequents. So,

essentially, we need this much to hold; m n l to hold the relation. m n to obtain the inputs and

then find the matrix and l to store the consequents.

So, once again assuming that these are actually all same that, m is equal to n is equal to l;

then this is for two input and one outputs so; that means, this essentially becomes m power p

plus 1 this is m power p and m. So, once again taking the highest order quantity here. In

general, this is of order m power p plus 1. So, for computational complexity is order of m

power 2 p and space complexity is order of m power p plus 1.
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Now, why not perform the operation in a different way? So, look at this hierarchically done

CRI. What do we have? We have a rule of the form A, B implies C and we are given input A

dash B dash. The hierarchical CRI, it suggest the following procedure. It says, first calculate

B implies C, then calculate an intermediate output C bar by using B dash and B implies.

So now, B implies C means it is a single input single output rule, you have a 2-D relation

given a B dash you compose it with this R dash and obtain the C bar which is an intermediate

output C. Now, the third step what we do is use A and this C bar as the consequents and

obtain the rule relation.

Then, obtain the final output by composing A dash with this R double dash. So, overall, this

is what you will get. So, at any point of time we are actually only using a single input single



output rule, storing that and then given the input we are actually composing and obtaining

this and this could also be extended if you have three inputs or n inputs or three inputs.
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Now, let us calculate this for the same values that we have considered. So, the rule that we

have is A, B implies C and A dash B dash of given inputs. Let us assume the same values for

A, B and C. So, first what we do is we obtain the relation between B and C only B is the

antecedent and C is the consequents. Once again let us use the Lukasiewicz implication. So,

the relation that we would get is essentially this.

Now, to obtain the intermediatry intermediary output C bar, it is we need to compose B dash

with this B implies C and we know B dash is singleton fuzzified. So, when we applied this

what we get is just the middle row which is 0.5 0.5 0.6. Now, this procedure suggests that we

should use this C bar as the current consequents and use A as the antecedent and for this rule

A implies C bar, we need to obtain the relation of the rule.

Once again using Lukasiewicz implication, this is the relation you will get and the final step

says that take A dash the given input and compose it with this particular relation R double

dash and obtain your final output. So, once again A dash is singleton fuzzified which means,

it has a one only at the third element which means the third row will come. So, this is

essentially how we proceed. It is clear that, we were able to do it in a single slide.



Which means it is much easier than what we have seen in CRI, even for a multi-input

single-output case, not only that there are many advantages.
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The first advantage when you see is we need to process only 2-D matrices at every stage;

because we are only considering one consequents of antecedent. So, even if you have p

dimensional antecedents at any point of time, we are only taking A p with B we get an R p

then we compose A dash with this R p and get a new say C 1 then, we will take A p minus 1

and then that B 1 or C 1 and then compose between A r obtain consider them as a antecedent

the consequents and get the relation.

And then given A p minus one dash as the input we compose it and we go on. So on and so

forth. So, essentially to obtain this single input single output I mean single input and the

single output case we need only m p into l operations. Now, to compose once again, this is

what it means. So, essentially it is m p into m p into l operations note that at any point of time

we are going to only consider single input single output rules and a single input A dash or A

p dash and obtain the corresponding consequents.

So, essentially all the time we are only using m cube operations and we may have to do it p

times. So, the overall computational complexity is nothing but p times m cube compare this

with the usual CRI which is m power 2 p. So, it is clear that m cube is the one that is going to

dominate depending on the granularity. So, essentially it is m cube p of it is a order of m

where has here it is actually going to increase exponential.
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What about the storage efficiency? You notice that at any point of time, we are only storing

the fuzzy sets of a rule we are not storing the rule relation at all. So, that means, if each of the

domains there is m i discretization with the number of points of discretization m i essentially

sigma m i is what you need to store. And, at processing time of course, we need a relation and

the given input and the given output.

So, essentially it is 2 m plus m square. So, order of m square is the highest thing that you will

take. Compare this with order of m power p plus 1. So, that is the difference in terms of

storage is almost m square always that is m power p plus 1. Quickly it saturates exponential;

not only computational storage deficiency are available, we also have associative inference.

For instance, if you are given this input, we can compose each of the A is independently at

every stage which means we need not wait for all the inputs A A dash and also not

necessarily in that order. So, these are some of the advantages of having hierarchical CRI.
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But, what about the inferred outputs from the original CRI this hierarchical CRI? Even when

we have the same A, B as Bs and Cs and the same operations. We noticed with from CRI the

output we got was 0.5 0.5 0.6 whereas from the hierarchical CRI it was 0.8 0.9 0.9 which is

not equal to the original inference. Well, is it a problem?

Well, yes, because we know that CRI, when we consider some operations, we have discussed

at length about it about the desirable properties CRI in terms of interpolativity, monotonicity,

robustness and continuity by moving to this form of an inference procedure. We should not

lose them. So, while we have a computationally efficient procedure, we should not lose the

accuracy, efficiency cannot hit efficacy.
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Now, is there an equivalence? Can we show that the outputs obtained from these two will be

equivalent? Well, yes, now for that look at the rule itself. So, consider the two inputs single

output. So, to obtain the relation what we do is, we first combine A and B with the T and then

apply an implication on this combined A, B to C.

So, in some sense, this is how it looks like for any given triple x y z. But, now, what

hierarchical CRI does is converts it into a sequence of implications. This is how it is seeing.

Now, clearly these two are equal if I and T enjoy law of importation. So, if we have a result

which says that if the inputs to the fuzzy system are singleton fuzzy sets and if the antecedent

combiner T-norm T is such that the pair I, T satisfies the law of importation.

Then the inference obtained from the CRI is exactly identical to the one obtained from

hierarchical CRI and what if the inputs are not singleton?
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Well, then, essentially by using the associativity of T-norm which is essentially like the law of

importation with I substitute T. We see that we could use the same T-norm as antecedent

combiner and also to relate the antecedent and consequents which is more like a R check rule.

We see that CRI and hierarchical CRI inferences are in fact, equivalent. So, we see the

important role played by law of competition here in ensuring that the computationally

efficient mechanism is in fact, also correct.
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In summary, we have studied law of importation in one of the previous lectures. And, we

know that there are many families of fuzzy implications which do satisfy this law of

importation. We have seen that in the case of residuated lattices it is always available and we

have made use of this multiple times improving desirable properties of FRIs especially.

But, in this lecture, because CRI was computationally pretty inefficient, we moved to the

hierarchical version of CRI for complexity reduction. However, we found that the outputs

obtained from the hierarchical CRI were not equivalent to that of CRI. And, that is where we

felt we found that the law of importation comes to a rescue and says, ok.

If the operations involved satisfy this property then, we can ensure the output obtained from

CRI is the same as that of what is obtained from an hierarchical CRI (Refer Time: 25:13).


