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Prof. Balasubramaniam Jayaram
Department of Mathematics
Indian Institute of Technology, Hyderabad

Lecture - 38
Takagi-Sugeno-Kang Fuzzy Systems

Hello and welcome to the last of the lectures in this week 7 of this course titled Approximate

Reasoning using Fuzzy Set Theory. A course offered over the NPTEL platform.

(Refer Slide Time: 00:33)

TSK Fuzzy System g’@

o Similarity Based Reasoning - The operations.
o Mamdani Fuzzy System.

o Building a Mamdani FIS using Matlab.

Qutline of this lecture

o TSK Fuzzy System.

o Build a TSK FIS using Matlab
o Defuzzification.

o A pictorial depiction of FRI and SBR.
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During this week of lectures, we have concentrated on similarity based reasoning. We have
seen there are two major types of similarity based reasoning that of the fuzzy inference
system proposed by Mamdani and Assilian which is typically called Mamdani fuzzy system.
We have seen how to build a Mamdani fuzzy inference system using the fuzzy logic toolbox

in Matlab.

We have approximated some specific given mathematical functions and we have also seen
how you could build a Mamdani fuzzy inference system in a given practical application. In
this lecture we will look at the second of the major similarity based reasoning inference
schemes that of the Takagi Sugeno Kang fuzzy system. Well once again build a simple TSK

fuzzy inference system using Matlab fuzzy logic toolbox in Matlab.



We will also visit the defuzzifier the defuzzification process briefly and finally, we will give a
pictorial depiction of both the fuzzy relational inference mechanisms and the similarity based

reasoning schemes perhaps you could then easily see some of the similarities that exist.
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Similarity Based Reasoning
The Mechanism
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Let us revisit the mechanism underlying the similarity based reasoning scheme.
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SBR - The Procedure g\’%}

NPTEL

SISO Rule Base

If % is A; Then jis B;, i=1,2,....n.

Step 1: Matching Input to the Antecedents

o The input A" is matched against every antecedent A;

o Matching Function: M : F(X) x F(X) — [0,1]
o Similarity Value : s; = M(A'", 4))

Step 2: Modifying the Consequents

o Modify each B; with the similarity value s;

o Modification Function: J:: [0,1] x F(Y) — F(Y)
o Bi=J(s;,B) ie, Bi(y)=J(si.Bi(y)), y€ Y.

o In essence; J: 0.1] x [0, 1] = [0,1].
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So, we are given a single input single output rule base of this form if x tilde is A 1 then y tilde

is B i. In the first step given an A dash which is a fuzzy set on x we match this A dash the



given input to each of the antecedent A i using a matching function and obtain the similarity
value s 1 which is typically in the interval [0,1] in the range of [0,1]. The second step we use
the similarity value to modify the consequence of each of the rules. So, given s i and B i we

modify the consequent to a B 1 dash which is again a fuzzy set on y.

(Refer Slide Time: 02:40)

SBR - The Procedure PO
| SBR-TheProcedwe | o
Step 3: Aggregating the Modified Consequents o

o Aggregate all of the Bls.
o Aggregation: G : F(Y) x F(Y) — F(Y) .
o G(B.B))(y) = G(Bi(y). Bi(y)). y€ V.

Step 37: Defuzzification

o The final output B' € F(Y) is defuzzified to y € Y.
o g: F(Y) = Yis any defuzzifier.

Step 17: Fuzzification
o Input x € X is fuzzified to A € F(X).
o h: X = F(X) is any fuzzifier.

¥ = {Px.Py.R(A. B).h.M. J.G.g}
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Now, we obtain such modified consequence B i for each of these is and the third step we
aggregate all of them to a single B dash. In the final step if required we defuzzified; that
means, map this B dash which is a fuzzy set on y to some value in the domain of the set y.
There is also a pre-processing step that is often we may be given an input which is a real
value not a fuzzy set, then in that case we apply the fuzzification operation to obtain the A

dash the given the input to be given to the system.

We have seen these five steps in depth. Note that when we need to specify a similarity based
reasoning scheme these are the parameters we need to specify P x and P y are the fuzzy
coverings on x and y R of A i B j are the rules A is are the antecedents which come from P x
B js are the consequence which are picked from t y and these are associated to form the rule
base h is the fuzzifier, M is the matching function, J is the modification function, G is the

aggregation function and small g is the defuzzifier.
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NPTEL

Fuzzy If-Then Rules - Classification IlI
Nature of the Consequent
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Also recall when we discussed the different classification that you could have on fuzzy if
then rules one type of classification we came up with was based on the nature of the

consequence.
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Consequent: Fuzzy set vs Function W)
®

NPTEL

Single Input Single Qutput (SISO) Rule:

IF %is A THEN s 5 .

N—

J:X=201wsy: X2 R

IF %is A THEN y = f(x) .

N—

Multiple Input Single Output (MISO) Rule:

IF % is A" and ...and %y is A” THEN {7 is B .

IF 5 is A and ...and % is A” THEN y = f(x.....xn) .
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We have seen that typically fuzzy thumb rules have fuzzy sets on both antecedent and
consequence; however, we could also have just a function on x real valued function on x or y
real valued function on x as the y. So, in that case the rule would read like this if x tilde as A

then y is equal to f(x). So, essentially this y is obtained directly from the given input x.



So, this is a function of x, y is given as a function of x typically a real valued function of x
and we have seen that the same can happen in the case of multi input single output rule. So,

the y is dependent on x 1 to x m the m dimensional input vector.
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NPTEL

Similarity Based Reasoning
Takagi-Sugeno-Kang FIS
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Now, let us look at the Takagi Sugeno Kang fuzzy inference system.
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TSK vs Mamdani {j@

NPTEL

Functions in Consequents of the Rules

IF %is Ay THEN y = ()
IF & is A, THEN y = fy(x)

IF % is A, THEN y = f,(x)

o Mamdani: g F(X) = F(Y).

o TSK: fix=y.
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Let us compare it with the known Mamdani inference scheme the first difference between a

TSK and Mamdani fuzzy inference system note that both of them are similarity based



reasoning schemes. So, the first difference is in the consequence of the rule. Well, in the case
of Mamdani fuzzy sets form the consequence in the case of Tagaki Sugeno Kang fuzzy

systems what we have are actually functions of x as the consequence.

So, you would have rules of the form if x tilde is A 1 then y is equal to f 1 of x if x tilde is A
n then y is equal to f n of x so, on and so, forth. Now, these functions f 1, f 2 so, on till fn
they are real valued functions they could be polynomials, they could be linear function, they
could be non-linear functions. There are no restrictions on the class of functions to which f'is

can be low this is the first difference.

Secondly, if you look at the overall inference scheme itself as functions then in the case of
Mamdani typically we input a fuzzy set on x and we obtain a fuzzy set on y of course, you
could always defuzzified and get an output over the domain y, but typically Mamdani fuzzy
systems are looked at like this. So, in that sense they are mapping from F(X) to F(Y);
however, TSK fuzzy systems typically are considered as mappings from x to y of course, we

will suitably fuzzify it to process it, but you could look at them as just functions from x to y.
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TSK: Inference 5%}

NPTEL

IFxis Ay THEN y =fi(x), i=1....n. ]

_

Wt. Sum TSK: Yo = 2 5i fi(X') J

i fi(x')
We. Avg TSK: Y= T2
" st

)

05 = Mz(A,',Ax/) = A,‘(X’) (MGW]

o A, - Singleton fuzzification of x = x’ € X.

o P, forms a Ruspini partition = yjs = Ya-
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Let us look at the inference itself there lies another differential. So, this is the rule base that
we are considering note that the output or the consequent functions y are functions of x. So,
now, given an X dash in x, the weighted sum TSK is given like this the output y dash is
obtained like this sigma over s i dot fi of x dash. Essentially it is a weighted sum weighted by

siand fiof x dash is the value that fi takes at the given input x dash.



Note that we are actually giving just a value x dash from x. In the case of weighted average
TSK all we are going to do is use the similarity values as weights and do a weighted average
of these weights with respect to the function values at x dash taken by the consequence of all
the rules. So, essentially it is either a weighted sum of the similarity values into the function
values at x dash or the weighted average of the similarity values into the function values at x

dash.

So, note that s is are the similarity values. So, typically you could use the M z function in
which case we know that this similarity s i is nothing but the membership value of x dash at
A 1. Of course, you could use anyone of those family of matching functions where you
suitably change these two operations plus and cross. Note that A x dash here symbolizes the

singleton fuzzified x dash.

That means, that x is equal to x dash you are fuzzifying its in a singleton way;, it takes the of
the corresponding fuzzy set takes the value one at x is equal to x dash and 0 everywhere else.
And if you are using such a matching function where s i is in fact, A i of x dash. If P x the
fuzzy covering on x if it does form the Ruspini partition and if each one of the fuzzy sets

features in the antecedent of the room.

So, essentially we have a complete rule base then what is easy to see is that the output from
both the weighted sum TSK and the weighted average TSK they are going to be equal.
Because in that case what we would have is sigma j s j s actually going to turn out to be 1
because of Ruspini partition these are essentially a j of x dash. So, they will turn out to be 1 in

which case these 2 are in fact, identical.

So, TSK inference is pretty simple you first it is classified under SBR because given an input
we are finding the similarity to each of the consequence, we are modifying the similarity to
the antecedence we are modifying the consequence using these similarity values and

aggregating them. But can we really see it as an SBR?



(Refer Slide Time: 10:15)

Mamdani & TSK as SBRs:

o Wt. Sum TSK: [ = Z si - fi(x)

1
s+ fi(x)
o Wt. Avg TSK: Yea= ) ——
Xf: stj

Mz(A,A) = max min(A(x), A'(x)).

XE,

Jwvr(s,B)=B'(x)=s-B(x) ,x € X.

Mamdani | TSK - Wt. Sum

Matching M Mz Mz
Modification J JMvR X
Aggregation G 5 ¥

Defuzzification g | Any -
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Well in some sense yes, look at it these are the formulae that we have if it these are M z and J
MVR essentially this is a z s matching function and this could be looked at as just the product
of the similarity value into the consequent fuzzy setting rule. So, essentially it is a product

operation you could look at it as a product team.

Now how do Mamdani and TSK compare as SBRs? Let us concentrate on the TSK weighted
sum of course, we could also in some convoluted way look at weighted average TSK also as
an SBR in the matching it or mapping it to the different operation that we are given of h M J

G and g, but for the moment let us concentrate only on the weighted sum TSK fuzzy system.

So, we know that the matching function that you could use is typically the Zadeh’s matching
function of course, you could use any one of the major class of matching functions wherein
you change those two operations plus and times cross. The modification function in the case

of Mamdani fuzzy system is essentially this, you could also just look at it as product.

But in the case since we are dealing with only real numbers here, we could just look at it as
product here as the corresponding modification function for the aggregation all we are doing
is using the summation and since in a Mamdani fuzzy inference system you get an output
which is a fuzzy set on why we need a defuzzification whereas, here you could just look at

this as itself a real value.



So; that means, we are falling into the domain of y. Even though Matlab looks at this entire
operation as a defuzzification operation we could look at this as modification followed by
aggregation. So, this in a nutshell is TSK inference system this is how we infer, and this is
how we could map it to the different stages of steps in a similarity based reasoning scheme.
And we see some correlations or relationships the way Mamdani and TSK fuzzy systems

either differ or also compare favorably with respect to each other.

(Refer Slide Time: 12:32)

Building a TSK FIS in Matlab {\:&E
(GrenXeX.. |

Given X' € X ...

o Wt. Sum TSK: [ = Z si+ fi(x)
1

o Wt. Avg TSK: Y= ZLI(X)
; st'f

TSK - Wi, Sum
Matching M Mz
Modification J % o
Aggregation G )

A Matlab Implementation.
fi(x)=a;+ b; - x.
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Now, we will take a look at how to build a particular TSK for fuzzy inference system using
the fuzzy logic toolbox in Matlab. Note that these are the two things that we will be looking
at and with respect to the TSK weighted sum fuzzy inference system this is how the different
steps correspond to use M z as a matching function or one of those matching functions in
those classes those class of operations where you only change the plus and the times,

modification is product typically and aggregation is the summation.

Let us look at a particular Matlab implementation and fuzzy logic toolbox allows you to
implement the function on the consequent side either using a constant function or a linear
function. That means, either you can have just a i where b i1is 0 or it is a i plus b i x for each

of those consequence and the n rules that you have.
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NPTEL

B [ tdlitor - DAVatb\TeachngiNPTETSK FIS_Hist fqm ®x
+9 | TSKHist fqu Constfis | TSK Hist fquifis | TSK IS Hist fam 2| +
1 i |
A
2-  ing_file = 'D:\Matlab\Data Analysis\G_PP_Fuzzy_Ing\car. ]
3= A= inread(img_file);
4= 1= rgb2gray(n);
5 sfiqure =
6-  hisfigure;
7= subplot(2,2,1)
8- imshow(I)
9= set(hl,'Position’, [300 250 700 500]) ;
10-  pause();
I u i

12-  [counts, binlocations] = imhist(I);
13- subplot(2,2,2)

14~ imhist(1)

15-  pause();

17=  Dynamic_min = find(counts>0, 1)

18-  Dynamic max = find(counts>0, 1, 'last' )
19=  [3,7] = histeq();

20~ pause();

Let us look at implementing a TSK FIS in Matlab. Well, what we will do is implement build
a TSK fuzzy inference system to actually capture the behavior of histogram equalization as

we saw in the previous lecture.

(Refer Slide Time: 13:57)
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Dynamic min =
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Dynamic_max =
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So, once again this is the image we are going to consider, clearly our goal is to enhance the
contrast in this image. If you look at the corresponding histogram of pixel intensities we have

seen the dynamic range of this is limited it is not the entire 0 to 55 interval and this is what



we want to extend or expand. We have seen that the dynamic range is actually given by this

interval 97 243 so; that means, the pixel intensities lie between these values.

If you apply the histogram equalization we have seen in the previous lecture this is the kind
of contrast enhancement that you obtain and in the sense histogram is equalization can be
seen as making such a monotonic transformation to this histogram and that is how it is
expanding the dynamic range of the pixel intensities. We want to implement or capture this
monotonic behavior using a fuzzy inference system. Remember it is the monotonic behavior
of this expansion of this dynamic ring that we want to capture histogram equalization is one

mechanical way of doing it.

Now, we would like to implement a TSK fuzzy inference system to come up with a function
which shows similar behavior that when applied on this image will allow us to obtain a
contrast enhanced image. So, once again; that means, we need to actually find the fuzzy
coverings on x and y. It is clear x is the dynamic range which is essentially 97 to 243 and y is
the entire interval into which we want to extend or stretch this dynamic range into which is

the 0 to 55 interval.
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Let us once again fit split the dynamic range the actual dynamic range of the image into 20
equal intervals and fix triangular membership functions on them. So; that means, we are
going to have 21 such membership functions this will form the fuzzy covering of the input

space each one of them will also act as an antecedent. Now the question is to whom should



we relate this to? For the moment let us only consider a TSK fuzzy inference system where

the consequent function is a constant function.
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So, essentially, we are only going to pick these points to be mapped into. These are 21 equal

spaced points so; that means, you have 20 equal width intervals between 0 and 255.
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Let us look at how the TSK fuzzy infinite system itself would look like. As was mentioned

you see here this is a matching function from the family of matching functions to which



Zadeh’s and the (Refer Time: 17:04) matching functions below what we called as
modification is implication here and aggregation is here you can see that Matlab calls

weighted average or weighted sum as the defuzzification which of course, is a defuzzifying

operation.

But instead of this defuzzification operation we can also look at the TSK file system being

implemented as using the product for the modification or implication and the sum for the

aggregation well.
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Now, let us look at how the rules are. This essentially what we had yesterday or the previous
lecture. So, these are the input membership functions the where we have done it in when we

are trying to capture the behavior of histogram equalization through Mamdani fuzzy

inference system.
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Now, you will see that in the case of output membership functions while it is not shown here
you will see that it is in fact, so, the ninth membership function is mapped to a constant. So, f
9 of x is the constant function number 2 that is what we want and f 10 is the constant function

1 14.8 and f 11 is the constant function 127.5.
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So, this is what we have here let us look at the rules themselves. It is easy to see now that

these are the input fuzzy sets which become antecedents these are the output constant



functions which are the consequence. Now just as it happened in the previous case the

dynamic range starts from 97.
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So, the input is 97 the output is 0, if it is 100 it starts to increase it goes to 5.2 if it is 120 it

goes to 40 190 it goes to 162, if it is 240 it is almost 249, it is beginning to saturate at 245 it is

254. So, you see that we are actually getting a monotonic transformation of this dynamic

range into the entire interval 0 to 55.
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Let us look at the surface. So, this essentially the input output mapping that we had from the
Mamdani inference system that we built. Of course, the inputs are same the outputs we have
taken it to be just the centres of the output membership function that we had for the Mamdani

fuzzy inference case.

So, that both of these are matching is not really surprising. So, this is what we have as the
output function this is the mapping that this fuzzy inference system actually captures right.
Now, let us look at applying this fuzzy inference system TSK fuzzy inference system to these

images.
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So, this is the original image we had, there is the histogram equalized image and this is the
fuzzy inference system applied image. So, when you when we gave this input image to the

TSK fuzzy inference system, this is the contrast enhanced image that we obtained.
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Let us take a brief detour to look at the defuzzification mechanism itself for that let us

consider a simple Mamdani fuzzy inference system.
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In this we are actually trying to approximate the identity function, but clearly this function the
rule base that we have constructed is not going to approximated, but that is not the point here.
We want to see the effect of different defuzzification procedures or mechanisms operations
on the output. Now if you want to approximate the identity function then what we want is

when we give the input to be 0.5 we are expecting 0.5 to be the output.



However, we see here this is the overall output fuzzy set B dash and this is the corresponding
defuzzification mechanic operation that we have used. SOM stands for smallest of maxima.
So, we see here in this fuzzy set the kernel belongs to this part and the smallest of maxima
means, the first of the points to which the kernel belongs. So, we take the kernel which is part
of the support over which the fuzzy set assumes the value 1 or it could also be that part of the

support where it attains its maximum value the height the support of the height.

So, SOM stands for smallest of maxima which means essentially you are considering that
interval over which attains its maximum value and taking the infimum of those points which
in this case is 0.38. Instead of note that for 0.5 we are in fact, expecting 0.5 here, but that is

not what we are getting we are getting 0.38. What if we instead take mean of maximum?

You see here it has moved from the first the infimum of the corresponding support to the
middle point over which it takes the maximum membership values in this case it does look
like it is 1 and you see already the output has moved to 0.445. So, from earlier it was 0.38 for

the given input of 0.5 now it has moved to 0.45.
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What if we take the centroid defuzzification? Let us move back a bit. So, it is 0.432. If you

use the bisector defuzzification operation it is 0.43, but there is one more left LOM which

stands for largest of maximum.
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When we use that we see that its almost there. So, for 0.5 we are getting 0.5 and in fact, for
0.51 we would get 0.51. So, you see here by adjusting the defuzzification operation

appropriately we can at times achieve the desired result.
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Let us stay with this for the moment let us look at the surface that we have caught here. Note
that we actually want to and approximate the identity function; however, this is the mapping

that we are obtaining.
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If you use smallest of maxima you see here this function is not only a not approximating the
identity function, but is quite wiggly and it is also not monotonic even though identity

function is monotonic on the unit interval.
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If you use the last of maxima well at around 0.5 it is doing a good job, it is in fact, hitting the
diagonal of this function the identity function, but in other cases you see that it is not actually
doing the job; that means, it is not the identity function. However, it is it seems to be

monotonic; that means, once it goes up it does not come down.
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If you apply the mean of maxima, you see that not only is it not approximating it well. But it
also loses its monotonicity property and while these are continuous you see the sharp edges

and so, you know that these are not differentiable.
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Instead, if you apply the centroid defuzzification scheme at least in some parts of the domain
it seems more or less smooth. So, this should clearly illustrate demonstrate you that by

appropriately changing the defuzzification operation we can in fact, expect to get to change



the output function to a certain extent and typically when we want to tweak a function

because we are going from some heuristics and building these fuzzy inference systems.

So, we have lots of degrees of freedom in the form of defuzzifier h fuzzifier h matching
function m modification function g j aggregation function g and the defuzzifier function g.
So, all of these degrees of freedom can be put to good use to actually come up with a function

that we believe approximates the system function quite well.
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Well in the last two weeks of lectures we have looked at fuzzy relational inference and the
similarity base reasoning let us revisit them in a very pictorial way. So, please recall that in
the case of fuzzy relation inference you had two inference strategies first aggregate then infer

or first infer then aggregate.
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Now, what we have to infer is, given an input A dash which is a fuzzy set on x we want the
output to be a fuzzy set on y which we have indicated as B dash. To help us in this the
knowledge base which is the ground truth consisting of fuzzy if then rules each of these rules
is translated into a fuzzy relation. So, the first rule A 1 implies B 1 is captured in the form of

R 1 fuzzy relation, similarly the other rules R 1, R 2 so, on till R n.

In the case of first aggregate then infer what we would do is combine all of these relations
aggregate all these relations into a single relation R and use this to obtain the corresponding B
dash. So, we compose A dash with R with any of the compositions either the sup t
composition or the In-phi composition to obtain R B dash. So, if you use the sup t
composition we call it the compositional rule of inference as proposed by Zadeh if you use
the In-phi composition the Bandler cohort sub product composition we call it the BKS

inference.

So, this is pictorially how we do fatty first aggregate then infer in fuzzy relation inference.



(Refer Slide Time: 27:58)

NPTEL

FRI - Inference Strategy Il
First Infer Then Aggregate (FITA)

There is also an alternate inference strategy first infer then aggregate.
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In this case given an A dash to obtain a B dash what we do is we take all these relations we
do not aggregate them beforehand instead we infer B 1 dash from R 1 and A dash. Similarly,
given this A dash we obtain a B dash through R 2 and so, on and so, forth till we obtain B 1
dash from A dash and R n. Now these locally inferred outputs B 1 dash B 2 dash on till B n
dash all these B dashes we aggregate them. So, first we infer all these B i dash then we

aggregate them into a B dash this is how we obtain the overall output fuzzy set B dash.
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Now, if you look at similarity based reasoning once again we are given an A dash we would
like a B dash but now we are keeping these rules as such. So, A 1 implies B 1, A 2 implies B
2, A 3 implies B 3 so, on till A 1 B implies B 1. Unlike in the case of fuzzy relation inference
we do not change them into fuzzy relations instead we keep the rules as such given an A dash

we match this A dash to each of the antecedents and find the corresponding similarity values.

So, A dash is matched with A 1 with a matching function the corresponding similarity value

is s 1 the similarity of A dash and A 2 is given by s 2 similarity between A dash and A 3 is



given by s 3 so, on and so, forth till s n. Now, using the similarity values we modified the
consequence of the corresponding rules. So, s 1 modifies B 1 to give us B 1 dash s 2 modifies
B 2 to give B 2 dash s 3 modifies B 3 to give B 3 dash and s 1 modifies B n to give us Bn

dash towards this end we use a modification function j.

Now the final step we aggregate all this modified consequence much like the way that we do
in FITA and obtain the overall output fuzzy set B dash. Perhaps you may have seen some
relations or relationship between or resemblances between FITA First Infer Then Aggregate
and SBR scheme. In fact, later on in one of the lectures we will see how a fuzzy relational
inference in with when the operators are specified in a certain way can also be looked at as a

similarity based reasoning scheme.
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o An FIS approximates a given system function ..
o ... by covering it through overlapping rule patches.

o Similarity Based Reasoning.

o Mamdani FIS.
o Takagi-Sugeno-Kang FIS.

o Build an FIS using the FL Toolbox in Matlab.

o Different components and how to source them.

Interpolativity of Fuzzy Inference Systems

Balasul

bramaniam Jayaram  ARFST - Takagi-Sugeno-Kang Fuzzy Inference System

Well, a quick recap of the lectures that we have seen throughout this week we are now very
aware that a fuzzy inference system approximates a given system function by covering it
through overlapping rule patches. This is the concept that we have put to good use when we
try to build fuzzy inference systems we have specifically discussed similarity based reasoning
schemes in this week 2 of the major types are that of Mamdani and Takagi Sugeno Kang

fuzzy inference systems.

We have also seen how to build fuzzy inference systems both the Mamdani and the TSK type
using the fuzzy logic toolbox available in Matlab to approximate a given specified function or

even in a practical application, where we only had some qualitative features of the system



function. Finally, we have also seen the different components of the fuzzy inference system
and how to source them in a practical application. In the next few lectures we will discuss

interpolativity of fuzzy infinite systems.
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A good resource for the lectures that we have had through this week the topics covered in
them is the book by Passino and Yurkovich, also the book of C T Lin and George lee and the
book by Professor Piegat.
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At this juncture I would also like to point out some seminal works that we have discussed
throughout these lectures, it is this paper in which Professor Zadeh proposed the
compositional rule of inference way back in 1973 in 1985 Pedrycz used the Bandler Cohort

sub product composition to propose the BKS inference scheme.
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Int. J. Man—-Machine Studies (1975) 7, 1-13

An Experiment in Linguistic Synthesis with a Fuzzy
Logic Controller

E. H. MAMDANT AND S. ASSILIAN
Queen Mary College, London University, U.K.
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oFuzzy Identification of Systems and Its
Applications to Modeling and Control

TOMOHIRQ TAKAGI axp MICHIO SUGENO
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In this work it is in this work published in the journal of Man Machine Studies in 1975
Mamdani and S Assilian they proposed that Mamdani fazzy inference system in the year
1975 and Takagi and Sugeno they proposed the TSK fuzzy inference system in 1985 through

this article published in the hydro play transactions on systems man and cybernetics.
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Some related works it was mentioned during a few lectures that a Mamdani or a TSK fuzzy
inference system is capable of approximating any continuous function to arbitrary accuracy.

We have seen this with a few practical examples using the fuzzy logic toolbox in Matlab, but



theoretically also these results are available. So, this is one paper that deals with Mamdani
fuzzy systems showing their capability the universal approximation capability of Mamdani

fuzzy systems.
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There is another paper way back in 1998 which discussed how even with linear rule
consequence generalized Takagi Sugeno fuzzy systems are universal approximator. Please
recall we have also used the consequent functions to be constant functions in the example that
we have seen the case of contrast enhancement using TSK fuzzy system and we have seen

that it has more or less captured what we had in mind.
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This yet another paper discussing the uniform approximation or universal approximation

capabilities of fuzzy relational inferences.
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And finally, as was mentioned under some conditions on the operators and FRA can also be
seen as an SBR. This is something that we will take up in one of the oncoming lectures, but

this is one paper a work related to that.

So, in the next few lectures and from henceforth we will look at some of the properties that a
fuzzy inference system should possess or we expect it to possess the desirable properties that

of interpolativity, continuity, monotonicity and so on. In that quest we will begin by looking



at the interpolativity of fuzzy inference mechanisms. Glad that you could join us today for

this lecture I am hoping to see you in the next lecture.

Thank you again.



