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Lecture - 32

Fuzzy Relational Inference - Multiple Rules

Hello and welcome to the last of the lectures in this week 6 of the course titled Approximate

Reasoning using Fuzzy Set Theory. A course offered over the NPTEL platform.
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Fuzzy Relational Inference 5@

NPTEL

o Fuzzy If-Then Rules.
o Fuzzy Inference: A general mechanism.
o Fuzzy Relational Inference.

o FRI with a MISO rule.

Qutline of this lecture
o FRI with multip?e rules.
il %
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Let us have a quick recap of the topics that we have dealt with in this week. We looked at

fuzzy If-Then Rules in depth both from the different perspectives that we can look them at

and also in terms of the classification.

We have already seen the impact of 1 particular type of classification whether a fuzzy If-Then
Rule is single input single output rule or a multi input single output rule on the fuzzy relation

inference scheme itself.

Then, we moved on to looking at fuzzy inference schemes a very general schematic of it and
we have been discussing 1 particular type of fuzzy inference which is the fuzzy relational
inference. And in the last lecture we have looked even at handling multi input single output
rule. In this lecture we will look at fuzzy relation inference when we have multiple rules

means a knowledge base which consists of many fuzzy If-Then Rules.
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Fuzzy Relational Inference
The Mechanism
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A quick recap of the mechanism itself.

(Refer Slide Time: 01:40)

FRI - The Procedure 5:%

IF %is ATHEN yis B .

Step 1: Relational Representation of Rule R(A, B)

®

NPTEL

o Relate the antecedent A € F(X) and ..

o ... the consequent B € F(Y) ...

o ... by a fuzzy relation R € F(X x Y).
Y

R: X x 'Y = [0.1] represents the rule R(A. B) . J
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It is a two step procedure we begin by representing the rule by a fuzzy relation which relates
the antecedent which is a fuzzy set on X to the consequent which is a fuzzy set on Y and this

we capture it as a fuzzy relation on X cross Y.
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FRI - The Procedure FO)
[FRI-ThePocedure | ®
Step 2: Output from Composition

o Let A" € F(X) be the given input.
o Compose A’ with R to get the B/,
B = AOR = fS(A).

o Q: F(X) x F(X x Y) = F(Y) - composition operator.

FIM - The Form:

F= (X, Y.R(A,_B/).»B).

M

FRI - The Form:
F= (x, Y, R(4.B)~ R, @) ~FS.
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In the next step given an input A dash we compose the input with the relation that represents

the rule and we obtain an output.
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Fuzzy Relational Inference
lllustrative Examples
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Well, we will revisit 1 particular illustrative example that we have seen and then move on

from there.
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Inference in CRI - An Example {;@

NPTEL
Step 1: Relation from a Rule
If x is A Then y is B.

Example: R(—)

A=[317 B=[44

I x<y

x—y = len(x,y) —{

yox>y

So, we have a rule first step is to represent it as a relation for instance let A and B be given as
these vectors and now, we are going to use an implication essentially the Godel implication to

relate A and B to obtain the relation. We have seen this before that it will turn out to be this

perhaps we will do this once more.

(Refer Slide Time: 02:53)
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So, what we have is A here which is 0.3 1.7, B is 0.4 0.8 and the Godel implication we know

is essentially 1 if x is less than or equal to y and y; that means, x greater than y.



So, what we want to do is, we want R of A, B to be related by the Godel implication; that
means, A and B we wanted to be related by Godel implication. So, we have seen what it
means is taking the outer product with respect to the Godel implication B. Simply put what

we do is we take 0.3, 1 and 0.7 apply the Godel implication 0.4 0.8.

Now, let us fix 3 here we are comparing 3 to 0.4 under the Godel implication we see three is
less 0.3 is less than or equal to 0.4. So, this becomes 1 and 0.3 with 0.8 once again it becomes

1 and you will see that is exactly what we have is in the first row.

Now, let us look at 1 and 0.4 we know that 1 is the left neutral element of the Godel
implication so; that means, you will get 0.4 and 0.8 and finally, if you look at this 0.7 and
look at 0.4. 0.7 is greater than 0.4. So, you would get 0.4 here, but 0.7 is less than 0.8.

So, this will become 1. So, this is essentially the relation that you have got from the rule

using the Godel implication.
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Inference in CRI - An Example ... contd &
NPTEL
Output using Composition

A=(406)

B-A MR- Vex (A(X) A R(x, )

(11
B'=(406)¢ [ 4 8
41

B=ADYR=[46 o

F= (x. Y,R(4.5) ~ R(—),0 = ) =Py

f
lﬁ“

Now next step is given an A dash we need to compose and obtain an output. Since it is CRI

we are going to use the sup decomposition in this case we have chosen the minimum T
norm which means the formula looks like this and when you compose it with this we would

get the output like this.

Well, once again it is very easy to see that in this composition all we are doing is we are

taking max among the min. So, if we look at this row into this column, the minimum of this



is 0.4 minimum is 0 minimum is 0.4. So, the max of it is 0.4 similarly 0.4 and 1 it is 0.4, 0

and 0.8 it is 0.6 and 1 it is 0.6 max upon is 0.6.

So, this is how we obtain the output. Now in the general scheme the form of this particular
CRI we could write like this to build the rule base we are using an implication in this case the

Godel implication and we are using the sup T composition where T is TM ok.
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NPTEL

Fuzzy Relational Inference
With a MISO Rule

Well, we have seen how to do it with MISO Rule also.
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Modified Form of an FRI {;@
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FIM - The Form:
F= (X, Y R(A. B/),VI*).

FRI - 51S0:

F=(X.Y,R(A. B) ~ R(F).0).

FRI - MISO:

F=(X,Y.R(A, )~ R(F.é().@).
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We just look at it in terms of the form this is the general quadruple form that you can look at
any general fuzzy inference scheme itself as coming from X and Y the input and output

domain and we have a rule base and you have an inference operation.

We saw in the case of FRI with SISO a Single Output Single output single input single output
rule all we needed were two things one an operation to capture the relation between the
antecedent and the consequent and the composition. In the case of MISO we also wanted

another operation to combine the antecedents.
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NPTEL

Fuzzy Relational Inference
With Multiple Rules
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Well, now let us go to the next step which is how to deal with multiple rules.
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F= (X.Y,R(4.8). %)

IF s A THEN is 5, .

o Typically many more A;'s than B;'s. ) J

So, now, if you have noticed we have always written the general form for a rule base because
that is how we abstracted it from the general schema. So, we are already have multiple rules

even though we have discussed only for a single rule case.

Now, we have indicated as A 1 and B j the indice index sets could be different; however,
typically we have many more Ai’s than Bj’s which was quite common because we want to
look at fuzzy inference mechanism as a function mapping F(X) to F(Y); that means, we
typically should not be having less number of Ai’s and more number of Bj’s then they it

would not be a mapping as you might you would have to map Ai to many Bj’s.

We will come to talking about rule bases complete rule bases, past rule bases consistent rule

bases little later, but for now it is typical that we have more Ai’s than Bj’s.
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®
Fe (x, Y, R(A:.B), H)
IF %is A THEN j is 5; .
IF Temperature is A; THEN Fan speed isgB; J
Temperature | Fan Speed
Very Hot
Hot Fast
Almost hot
Average Medium
Warm
Cold
Very Cold Slow
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For instance, consider this group if temperature is Ai then fan speed is Bj. Now temperature
is the linguistic variable fan speed is the linguistic variable these two take values over the

fuzzy sets on x and y.

So, now if you look at what are the linguistic values these two linguistic variables can take.
Perhaps it might look like this the temperature can take linguistic value values like very hot
almost hot average warm cold and very cold well fan speed can assume the linguistic values
fast medium and slow. This is what you have extracted given the domain knowledge and you

will clearly see there are more linguistic values the temperature can assume than fan speed.

And perhaps it might even assume I said we will look at rules the each rule actually capturing
some part of the domain locally this kind of an interpretation we will see soon enough
perhaps in the next week of lectures when we are discussing. Similarity based reasoning for
the moment it suffices to know that the index such i1 and j may not be same, but typically 1

tends to be the cardinality of i tends to be greater than equal greater than the cardinality of j.
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F= (x, Y R(A. Bj),»y).

IFXis A, THEN j is 5, . \

9

o Typically many more A;'s than B;'s.

o i€l jeJ-typicaly, || > |7
o Wlog.: Let |Z| = |J.

So, this is what happens, but without loss of generality for this lecture we will assume that the
cardinalities are same it is only to help us with a notation. So, thus we will write the rules as

if x tilde is Ai then y tilde is Bi.
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NPTEL

FRI - Multiple Rules
Inference Strategies o

Well, when you have multiple rules and when you want to apply a fuzzy relation inference

there are two inference strategies. What are they?
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NPTEL

FRI - Inference Strategy |
First Aggregate Then Infer (FATI)
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The first one of them is called first aggregate then infer it is typically abbreviated and called
as FATI strategy what do we have?
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First Aggregate Then Infer - FATI %@}

IF Xis A; THEN j is 5; .

R(A,',B,') = R,' XxY = [0, 1].

Aggregate to an overall relation R:

Infer with the global relation
B' = A'GR.

Note: G can be any binary (associative) fuzzy logic operation. J
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We have a set of if then rules first what we do is for each of them we obtain a relation R 1 just
like if you had a single rule you obtain relation similarly for each of those rules we obtain a
relation R 1 R 1 R 2 so, on till R n then we aggregate all of these relations into a single

relation using an operation G.



So, you have n relations representing these n rules we aggregate all of them into a single
overall relation R then we infer with this global relation. Now given an A dash we would just
compose it with the global relation R to get the B dash. So, first we aggregate all the relations

then we infer so, that is where it gets its nomenclature from its first aggregate then infer.

Note that this G operation can be any binary associative fuzzy logic operation because what
are we doing? We are actually come aggregating Ri’s which are fuzzy relations which are

essentially fuzzy sets on x cross y.

So, this is the general procedure the inference strategy of FATI first aggregate all the rules

and then infer with a given input.

(Refer Slide Time: 11:13)

FRI - FATI : A Visual lllustration {@
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Ri

A - B
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Which only if we look at it we have A dash we have these n relation and what we are
interested is in obtaining B dash. Remember these Ri’s are capturing each of these rules and

each rule has some local knowledge about the domain that is under consideration.

What we first do is combine all of them into a single R and then use A dash to composite

with R to obtain the B dash. So, this is essentially how we do the inferencing.
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FRI - Inference Strategy Il

First Infer Then Aggregate (FITA)
8
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Now there is also an alternate strategy which says first infer then aggregate now what is this

strategy?
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First Infer Then Aggregate - FITA {:@

IF %is A THEN 7 is G .

R(A,‘,B,') =R:XxY—= [0,1].

Obtain the individual ouputs:
B/ = AGR:.

Aggregate to an overall output:
B' = GiegBi = G(B]. B,,.... B)).

Note: G can be any binary (associative) fuzzy logic operation. J
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Once again we are given multiple rules for each one of them we obtain the relation that

represents the rule.

Now, instead of aggregating all the rules first what we will do is, we will obtain the

individual outputs; that means, given A dash we assume there is each one of those rules is



separate the relations are there we are actually composing A dash with each one of these Ri’s
and obtaining the corresponding Bi dash it is not the B dash it is Bi dash. So, locally we are
inferring then we aggregate this to an overall output once again using an operation which we

have denoted it as G.

So, this what it does is it aggregates all this B a dashes from B 1 dash B 2 dash until B n dash.
Note that these Bi dashes they are all fuzzy sets on y.

So, in that sense once again we can use any binary associative fuzzy logic operation.
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FRI - FITA : A Visual Illustration {2@
R—B]
' — Bé
A | ) B
i} Rn — B,
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If you would like to look at it visually what we are doing in FITA is we are not aggregating

all the rules instead we are taking A dash composing it with R 1 and getting a B 1 dash
composing it with R 2 getting a B 2 dash so, on so, forth composing it with R n and getting a
B n dash then we combine aggregate all these B i1 dashes to obtain a B dash. So, this is how

these two strategies differ.
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Modified Form of an FRI

FIM - The Form:
F= (x. Y, R(A. B/).%).

FRI - SIS0:
F= (x. Y, R(A.B) ~ R(F),@)A
FRI - Multiple SISO:
V]
F= (X, Y.R(4.8) ~ R(F).G,0).

FRI - Muttiple MISO:
F= (x, Y R(A.B) ~ R(F.K).c.@).

ARFST - Fuzzy Relational Inferance - Multiple Rules

form we have seen that for a single SISO rule case all we need is F which captures the
relation and the composition in the case of multiple SISO not only do we need F to capture
the relation, but we also need a G an aggregation function which either aggregates the rules

or the local inputs B dashes Bi dashes and of course, we also need a computation.

So, if you are looking at multiple MISO rules of course, we need an F also the antecedent

combiner the aggregation G and the composition. So, this essentially takes care of all possible

scenarios.

i

So, if we were to look at the modified form how you can capture it this is the general FIM

NPTEL
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CRI - An Example
Multiple SISO Rules

Y

Let us look at a couple of examples let us start with CRI.
(Refer Slide Time: 14:18)

CRI - Multiple Rules : An Example {j@

R(A,B;)

IF is A, THEN j is 5;
IF is 4, THEN  is B,

A=[317 B=[48 A=[415 B=[317

FRI - Multiple SISO:

F :@(x‘ Y.R(4.B)~R(F).G.0).

ARFST - Fuzzy Relatior

So, assume that we are given two rules and the A 1 A2 B 1 B 2 are given as follows. So,

once again we assume that x is discretized with three points and y by two points.

You might immediately recall this is something that we have already used earlier instead of A

and B we are just now calling it as A 1 B 1 just. So, that we can make the calculations easier



and now what we want is a multiple SISO rule is given to us and we need to handle this using

a fuzzy relation inference.

Now, what are the things that we need? We need an F to relate the antecedent with the

consequent we also need an aggregation operation G and of course, the composition.

Now let us assume the Godel implication for relating the antecedent with the consequent then

the question now comes what should this aggregation G be.
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NPTEL

Fuzzy If-Then Rules - Classification
Conjunctive vs Implicative
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Well, this is where we will go back to one of the classifications that we have given on fuzzy if

then rules.

If we recall, we discussed when a fuzzy if then rule is conjunctive or implicated.
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Conjunctive Rule B 90
®
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Xis Al AND )”/ is Bl.
OR

% is Ay AND 7 is By,

o Give positive p@ieces of information.
@ More like association rules.

o Paossibility Rules.

o Combined with disjunction.
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Even though we have written it in this form we could also represent it as if x is A then y is B.
So, now, if the rules are conjunctive in nature; that means, they actually give positive pieces
of information they are more like association rules and they emphasize on the different

possibilities that you have.

So, in that sense these are called possibility rules and what we will do is, we combine them
with a disjunction because any one of them is possible. So, we use a disjunction to combine

them.
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Implicative Rule Base g\:@
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IF %is A, THEN j is B;,
AND

IF % is A, THEN 7 is B,.

o Give negative{gieces of information.
o Constrains the consequent.
o Necessity Rules.

o Combined with conjunction.
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However, if it is an implicative rule then they actually give negative pieces of information
they in fact, constrain the consequent if x is A then y necessarily has to be B. So, in that sense
these are necessity rules and if you have pieces of knowledge each of which is constraining
then you will have to ensure that all of them are valid in which sense we will have to use a

conjunctive operator to combine all these rules.

(Refer Slide Time: 16:39)

CRI - Multiple Rules : An Example {’%}
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R(A;, Bi)
IF % is A] THEN }7 is 81
IF % is A> THEN ¥ is B,
M=[317 Bi=[48 A=[415 B=[3.]

FRI - Multiple SISO:

F= (X, Y.R(4.8)~R(F).6,0).

F=lkg  G=min/Ty o= J

14 *
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So, let us return to this scenario now we are in fact, using an implication to relate the
antecedent and the consequent. So, it is only incumbent on us that we should consider a
conjunction for G. Remember this is when we are actually going with what we know about
the rules, but of course, theoretically nothing precludes you from using any other operation
for G, but since we have some interpretation at hand let us try to stick to it and so, let us
consider G to be a T norm and for ease of calculation let us take it to the minimum T norm T

m.

Of course, we are considering CRI which means the composition automatically becomes sup
T composition and once again for ease of calculation let us consider the minimum T norm

sup mean composition ok.
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CRI - An Example
First Aggregate Then Infer (FATI)
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So, let us start with the calculations.
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Step 1: Determine the relations of the rules g\:@
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A=[317 B=[48 A=[415 B=[37

el G = min 0="2 J

Al = [3 1 7] Bl = [4 8] A2 = [4 1 5] BQ =13 7]

[

1 3

Rl(Al, B]) = A Rz(Az. Bz) = 3
4 31

= o
S

ARFST - Fuzzy Relatior

First, we need to determine the relations of the rules. Remember these are two rules given to
us A1 B 1and A 2 B 2 and we use F to relate the antecedent with the consequent. So, now,
given A 1 B 1 we obtain the corresponding relation this is exactly the same thing that we
have done a few minutes ago. So, we know that this relation is right and similarly if you use
A 2 B 2 and the Godel implication we would get this relation. So, we have two relations from

two rules R 1 and R 2.
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Step 2a: FATI - First Aggregate ... the Rules 5’%‘}

M

S

F=lep G = min 0

A=[317) Bi=[48 | A=[415 B =[3.7]

[
1 1 B
Ru(A1,By) = ( 4 ,s) R, By) = ( 3 ])
41 31

Aggregate the rules / relations

i

This is the first step in the second step of FATI we first aggregate the rules. So, now, these are

the two rules the relations to relations representing the rules. So, we aggregate these relations

with the aggregation operation G in our case G happens to be the minimum.

So, we take R 1 we take the minimum operation and we take R 2. Now this is even though
they look like they are written in terms of matrices the operation min is in fact, being done
component wise. So, if you take 1 and 0.3 minimum with 0.3 then itis 0.3, 1 and 1 is 1 0.4

and 0.31s0.30.8and 0.71s 0.7 and 0.4 and 0.31s 0.3 1 and 1 is 1.

In fact, you can see that this entire matrix is smaller than this with respect to the usual
component wise all that. So, the min of that is essentially going to turn out to be this. So, in

the second step we have aggregated the relations that we have into our overall relation R.
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Step 2b: FATI - Then Infer ... with the aggregated relatio {;@

NPTEL

Pelly,  Geogply (=5

S—

Aggregate the rules / relations

11 ‘
R—G(Rl.Rg)—(A .s)/\(.'
41 3

Infer using the aggregated relation R

w w w

B'= AGR=(40.6)" (

The third step is to infer with this aggregated relation we have this. So, B dash is A dash

composed with R.

Now, let us use the same A dash that we have been considering 0.4 0 6 and the composition is
given as sup min composition. So, this is what we will have and clearly when we take this
and compose with this we have to look at taking min component wise and the max of them.
So, and in if you would like to write this once again what we have is 0.4 0 6 composed with

03030310.71.
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What essentially we are doing is we are going to look at the minimum between 0.4 0.3 which
is 0.3 0 and 0.3 is 0.6 and 0.3 is 0.3. So, minimum is essentially 0.3 and once again let us
consider with respect to the second. So, 0.4 and 1 it is 0.4, 0 and 0.7 it is 0.6 and 1 it is 0.6.

So, the maximum is 0.6.

So, what we will get is 0.3 , 0.6. So, this is the inferred output what did we do? We
considered both these relations aggregated them first and inferred using this relation. Let us

also look at an example for FITA first infer then aggregate.

(Refer Slide Time: 20:42)
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CRI - An Example
First Infer Then Aggregate (FITA)
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Step 1: Determine the relati f the rul
ep etermine the relations ot the rules {:@
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A=[317 B=[48 A=[415 B=[37]

F=lep G =min 0=o0o J

I 1 &
Rl(Al. Bl) = A ng(Ag. 32) = & o
4 1 31
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So, essentially, we are going to consider the same system which means we have the same

relations representing the rules.
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Step 2a: FITA - First Infer ... 5;@

=l G = min =4 J

Al = [43 1 47] B = [.4 .8] A = [.4 1 .5] B, = [.3 .7]

11 31
Ri(ALB)=| 4 8 Ro(Ao,By)=| 3 .7
41 31 o

However now here we first infer; that means, given these two relations we independently

infer the corresponding B 1 dash and B 2 dash.

So, B 1 dash is A dash composed with R 1 in this case A dash is this, this is the R 1. Once
again if we perform the sup min composition this is the output you would get and similarly
for B 2 dash we take A dash and compose it with this R 2 that is here and if we see what we
would get is we would get 0.3 and 0.6 as the output. So, these are the individual local outputs

B 1 dash and B 2 dash.
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2b: FITA- ... Then A
Step 2b en Aggregate %}
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In the second step of FITA what we are going to do is, we are going to aggregate the inferred
local rule outputs to aggregate again we use the min operation. So, taking these two doing the

component wise min what we get is 0.3 0.6.

So, this is essentially how we do the inferencing with respect to CRI whether we apply the

FATI inference strategy or first infer then aggregate inference strategy.
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NPTEL

BKS - An Example
Multiple SISO Rules

9
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Let us also look at an example in the case of BKS.
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BKS - Multiple Rules : An E I
®

R(A,, B)
IF s A, THEN  is B,
IF % is A, THEN  is 5,
A=[317] Bi=[48 A=[415 B=[317]

FRI - Multiple SISO:

F= (X, Y.R(4.8) ~ R(F),6,0).

/
Fzlpp G=mn @=9 J

So, once again here we consider the same system we consider the Godel implication for
relating the antecedent with the consequent min because it is implicative type. So, staying
true to the interpretation we want to use the conjunction operation which we have chosen to
be the min T norm and obviously, we are discussing BKS. So, this becomes inf i composition

and in this case we have chosen the Kleene dienes implication.
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BKS - An Example
First Aggregate Then Infer (FATI)
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Let us look at how to do FATI in this.
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Step 1: Determine the relati f the rul
ep etermine the relations ot the rules %}

NPTEL

Ai=[317 B=[48 A=[415 B=[317]

I
ERN C=min 0= J

1 31
RuALBy)=| 4 RoAaBy)=| 3 7
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So, now, it is the same system ais and bis are not changed and we are obtaining the relations
from the rules using the Godel implication. So, hence these relational matrices also do not

change they remain the same.
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Now, in this case we first aggregate. Once again we are using the same aggregation operation

min. So, nothing changes in this step either.
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Now things start to change. Now we need to infer with this aggregated relation and now
inferring with this relation means composition comes into picture and we are using BKS
inference which means the inf i composition comes into place. So, B dash is obtained as A
dash composed with R in this case it is essentially taking A dash and using inf i composition

with 1 being the Kleene dienes implication.
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So, once again let us look at this here it is essentially the same matrix. So, I will need erase

this and (Refer Time: 23:50) and they influence IND. So, how will it look like. So, now, the



two components that we have here let us first take 0.4 and 0.3. So, now, we are using
minimum. So, inf i composition I mean i composition because it is a discrete few of finite
number of elements are only there and we are using Kleene dienes implication. Please recall
what Kleene dienes implication is it is an sn implication where the T co norm is max and the

negation is 1 minus x.

So, when we consider 0.4 and 0.3 it is 1 minus 0.4 , 3 max 0.3 max of them. So, 0.6 of 0.3 it
is 0.6. If we consider 0 and 0.3 since it is an implication it will be 1 and if we consider 0.6
and 0.3 it is min of maximum of 1 minus 0.6 , 0.3 which is maximum of 0.4 , 0.3 and so, it is

0.4.

Similarly, if we consider 0.4 and 1 neither we will talk about min minimum we know that if'y
is 1 it is 1 0 implies min term it is 1 and once again 0.6 and 1 if you take is 1. So, now, this is
what we are looking at this is equal to if we take the min of them it is 0.4 and 1. So, you see

here this is the output we get using B KS and the FATTI strategy.
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Let us also apply on the same system BKS with FITA strategy.
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Once again the relations do not change.
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But now the first step itself will change because using these relations we need to infer B 1

dash and B 2 dash using the inf i composition.

So, these are R 1 and R 2. So, B 1 dash is A dash composed with R 1 using inf i where i is the
Kleene dienes implication just as we have done now if you apply this what you would get is

this as the output the vector 0.4 1 and if you apply A dash on it mean composite with R 2



once again you get the vector 0.4 1. So, now, we have inferred independently these are the

local outputs.

(Refer Slide Time: 26:28)

Step 2b: FITA - ... Then Aggregate {j%-}

NPTEL

Aggregate the inferred local rule ouputs
B'=G(B].B)) =4 1]A\L41] = (4 1).

Balasubramaniam Jayaram ARFST - Fuzzy Relational Inference - Multiple Rules

Now, we need to aggregate these local outputs using the aggregation operation which in this
case is the min operation here both the vectors are identical. So, you get this as the output. So,

this is all you would do you would handle BKS inference when you have multiple SISO rules

either using FITA or FATIL.
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So, once again if you are looking at FATTI all you do is get individual rules aggregate them
first and use that aggregated overall global rule global relation to infer from the given A dash

by composition.
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If you are using FITA then keep all these relations separately infer locally; that means, use R
1 and A dash to get a B 1 dash R 2 and A dash to get a B 2 dash so, on and so, forth till B n
dash then aggregate these fuzzy sets B 1 dash B 2 dash till B n dash to obtain your B dash.
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Well, some observations are worthy of making look at for this particular example where the
Ais and Bis have remained the same and so, has A dash when we applied CRI with FATI
inference strategy to obtain B dash was 0.3 0.6 when we applied FITA strategy once again it
was 0.3 0.6.

On the other hand when we applied BKS on the same system with FATI we have obtained the
output as 0.4 1 and with FITA again we obtained the output 0.4 1. It throws up many
interesting questions and couple of them for you first question that you would ask is on the
same system just by changing the composition we have got two different outputs two

different B dash which is the correct one.

Another question that we could ask is just looking at it. So, it appears that in CRI whether
you use FITA or FATT or in BKS whether you use FITA or FATI, the outputs seem identical,
but 1s this magic will this magic work every time or is it just an anomaly or are there clear
conditions under which FITA will be equal to 5? Now these are very interesting questions as
was mentioned earlier in one of the lectures we will discuss these and to be able to discuss

them and give a clear answer.

We would make use of some of the theoretical structures that we have built up we have seen

earlier in the earlier weeks of this course.
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A quick recap of what we have dealt with in this whole week. We have looked at fuzzy
relational inference in depth we have seen there are two major types the compositional rule of
inference and the Bandler Kohout Subproduct. There are two inference strategies when we

are considering multiple rules FITA first infer then aggregate or first aggregate then infer.

And there are two types of rules to consider single input single output or multiple input single
output. What next? We will look at the other major type of fuzzy inference mechanism

essentially the similarity based reasoning system.
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Once again a good resource for the topics covered in this lecture is the book of Driankov

Hellendoorn and Reinfrank.
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And of course, also the book of George Klir and Bo Yuan. Glad that you could join us for this

lecture and hope to see you soon in the next lecture.

Thank you all.



