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So, we will now start a new chapter: Chapter 2: The Lebesgue measure:

This is the most important measure which we will study in this course. And therefore, we

will do it in a little detail. So, remember the Caratheodory thing. So, you start with a

non-empty set and then you have a ring and the measure on it, then you go to the hereditary

sigma ring, which has a natural outer measure, and then you have the set of all mu star

measurable sets and you define the measure on it, which is the same as mu star and then of

course, you show that in fact, this contains both R and S of R and therefore, mu bar is an

extension.

So, this S bar with that gives you a complete measure, and this is the process which you areµ 

going to play. So, we are going to start with ℝ so, we will do everything in ℝ but you will see

immediately how to extend it to so, in one go, we will finish everything. So, if you take ℝℝ𝑁

recall that we had this example 𝑃 = {[𝑎, 𝑏): 𝑎 ≤ 𝑏};  𝑓𝑜𝑟 𝑎 = 𝑏,  [𝑎, 𝑏) = ϕ.

So, and so, if a equal to b then you say a b is same this is the definition the convention which

we are doing and we are going to define on this



µ([𝑎, 𝑏)) = 𝑏 − 𝑎

and then if you take all finite unions from P = all finite disjoint unions from P.𝑅 =  

So, if you take mutually disjoint.𝐸 = ∪
𝑖=1

𝑛𝐼
𝑗
 ,  𝐼

𝑗
∈ 𝑃,  {𝐼

𝑗
}

𝑗=1
𝑛 

So, then it is almost obvious because measure has to be countably additive and in particular

additives therefore, But then any set E which is a finite union you may beµ(𝐸) =
𝑗=1

𝑛

∑ µ(𝐼
𝑗
) .

able to write in more than one way as a finite union of disjoint intervals like this and

therefore, we have to show that this is well defined and then we must of course show this is

countably additive. If we know these 2 things, then mu will be a measure on the ring and

then the Caratheodory method will take over and whatever complete measures we get there

that will be called the Lebesgue measure.
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So, a series of technical results which we need to prove are all more or less obvious. So, we

will have to write them down carefully, especially the first few results.

Lemma 1: (a) let be a finite set of mutually disjoint intervals in P such that each is{𝐸
𝑖
}

𝑖=1
𝑛

contained in . Then .𝐸
0

∈ 𝑃
𝑗=1

𝑛

∑ µ(𝐸
𝑗
) ≤ 𝐸

0

(b) Let closed interval contained in the finite union of open intervals𝐹 = [𝑎
0
, 𝑏

0
]



Then𝐼
𝑗

= (𝑎
𝑗
, 𝑏

𝑗
),  1 ≤ 𝑗 ≤ 𝑛. 𝑏

0
− 𝑎

0
≤

𝑗=1

𝑛

∑ (𝑏
𝑗

− 𝑎
𝑗
).

Proof: (a) So, you write Since E_ii is disjoint we can assume𝐸
𝑖

= [𝑎
𝑖
, 𝑏

𝑖
),  0 ≤ 𝑖 ≤ 𝑛.

without loss of generality

𝑎
0

≤ 𝑎
1

< 𝑏
1

≤ 𝑎
2

< 𝑏
2

≤.... ≤ 𝑎
𝑖−1

≤ 𝑏
𝑖−1

≤ 𝑎
𝑖

< 𝑏
𝑖

≤ 𝑎
𝑖+1

<... ≤ 𝑏
𝑛

≤ 𝑏
0
 .

So, this implies that

⇒
𝑖=1

𝑛

∑ µ(𝐸
𝑖
) =

𝑖=1

𝑛

∑ (𝑏
𝑖

− 𝑎
𝑖
) ≤

𝑖=1

𝑛

∑ (𝑏
𝑖

− 𝑎
𝑖
) +

𝑖=1

𝑛+1

∑ (𝑎
𝑖+1

− 𝑏
𝑖
) = 𝑏

𝑛
− 𝑎

1
≤ 𝑏

0
− 𝑎

0
= µ(𝐸

0
).

So, that proves (a).
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(b) So again renumber, if necessary, the U_i and get rid of superfluous ones, so that you have

𝑏
𝑖

∈ (𝑎
𝑖+1

, 𝑏
𝑖+1

) = 𝑈
𝑖+1

  ,  1 ≤ 𝑖 ≤ 𝑚 − 1,  𝑚 ≤ 𝑛.

So, we have got rid of some extra ones which may be the repetitions of the sets and so on and

that only adds to the right-hand side of this equation here and therefore, getting rid of any set

proving it for a smaller number is not a problem that still proves the same thing.

So, and also . So again𝑎
0

∈ 𝑈
1
 𝑎𝑛𝑑 𝑏

0
∈ 𝑈

𝑚



𝑏
0

− 𝑎
0

< 𝑏
𝑚

− 𝑎
1

= 𝑏
1

− 𝑎
1

+
𝑖=1

𝑚−1

∑ (𝑏
𝑖+1

− 𝑏
𝑖
) ≤

𝑖=1

𝑚

∑ (𝑏
𝑖

− 𝑎
𝑖
).

So, I am writing a (())(11:03) sum and that is less than or equal to sigma i equals 1 to m of bi

minus ai because you have that bi is contained in ai plus 1. So, that is why you have this you

get this and therefore, that proves this theorem. So, this is the first technical lemma which is

really nothing just intuitively if you drew pictures, the proof will be obvious.
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Proposition 1: If is a sequence in such that Then{𝐸
𝑖
}

𝑖=1
∞ 𝑃 𝐸

0
⊂ ∪

𝑖=1
∞𝐸

𝑖
 .

µ(𝐸
0
) ≤

𝑖=1

∞

∑ µ(𝐸
𝑖
).

proof: Trivially true if So let us take So, all the𝐸
0

= ϕ.  𝐸
𝑖

= [𝑎
𝑖
, 𝑏

𝑖
),  1 ≤ 𝑖 < ∞,  𝑎

𝑖
< 𝑏

𝑖
.

intervals are disjoint and you choose Let be arbitrarily small. So,0 < ϵ < 𝑏
0

− 𝑎
0
 . δ > 0 

then and you define𝐹
0

= [𝑎
0
, 𝑏

0
− ϵ) ⊂ 𝐸

0
𝑈

𝑖
= (𝑎

𝑖
− δ

2𝑖  ,  𝑏
𝑖
) ⊃ 𝐸

𝑖
 .
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And therefore, and is compact and so there exists a finite subcover. So, let𝐹
0

⊂ ∪
𝑖=1

∞𝑈
𝑖

𝐹
0
 

us assume that 𝐹
0

⊂ ∪
𝑖=1

𝑚𝑈
𝑖
 .

So, Lemma (b), of course, you will get

𝑏
0

− 𝑎
0

− ϵ <
𝑖=1

𝑛

∑ (𝑏
𝑖

− 𝑎
𝑖

+ δ

2𝑖 ) ≤
𝑖=1

∞

∑ (𝑏
𝑖

− 𝑎
𝑖
) + δ.

𝑖. 𝑒.,  µ(𝐸
0
) − ϵ <

𝑖=1

∞

∑ µ(𝐸
𝑖
) + δ.



Letting you get the proposition.ϵ,  δ → 0,  

Proposition 2: is countably additive inµ 𝑃.

proof: mutually disjoint.𝐸
0

= ∪
𝑖=1

∞𝐸
𝑖
,  𝐸

0
,  𝐸

𝑖
∈ 𝑃,  {𝐸

𝑖
}

𝑖=1
∞

So, by Proposition 1 we have By Lemma (a) for every n, we haveµ(𝐸
0
) ≤

𝑖=1

∞

∑ µ(𝐸
𝑖
).

𝑖=1

𝑛

∑ µ(𝐸
𝑖
) ≤ µ(𝐸

0
) ⇒

𝑖=1

∞

∑ µ(𝐸
𝑖
) ≤ µ(𝐸

0
) ⇒ µ(𝐸

0
) =

𝑖=1

∞

∑ µ(𝐸
𝑖
).

So, that proves that it is countably additive in P.
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Theorem: There exists a unique finite measure on which extends on P.µ 𝑅 µ

proof: Let . So, , is disjoint.𝐸 ∈ 𝑅 𝐸 = ∪
𝑖=1

𝑛𝐸
𝑖
 𝐸

𝑖
∈ 𝑃,  {𝐸

𝑖
}

𝑖=1
𝑛

So, we are more or less forced to define so, µ(𝐸) =
𝑖=1

𝑛

∑ µ(𝐸
𝑖
).

Only we have to check that this is well defined because it may have a different

decomposition.



So, we assume so, well defined so, we take are𝐸 = ∪
𝑖=1

𝑛𝐸
𝑖

= ∪
𝑗=1

𝑚𝐹
𝑗
 ,  {𝐸

𝑖
}

𝑖=1
𝑛,  {𝐹

𝑗
}

𝑗=1
𝑚

disjoint, 𝐸
𝑖
,  𝐹

𝑗
∈ 𝑃.

So, for all we have1 ≤ 𝑖 ≤ 𝑛,  𝐸 = ∪
𝑗=1

𝑚(𝐸
𝑖

∩ 𝐹
𝑗
) ,  ∀ 1 ≤ 𝑖 ≤ 𝑚,  𝐹

𝑗
= ∪

𝑖=1
𝑛(𝐹

𝑗
∩ 𝐸

𝑖
).

So, Similarly, So,µ(𝐸
𝑖
) =

𝑗=1

𝑚

∑ µ(𝐹
𝑗

∩ 𝐸
𝑖
) . µ(𝐹

𝑗
) =

𝑖=1

𝑛

∑ µ(𝐹
𝑗

∩ 𝐸
𝑖
).

𝑖=1

𝑛

∑ µ(𝐸
𝑖
) =

𝑖=1

𝑛

∑
𝑗=1

𝑚

∑ µ(𝐹
𝑗

∩ 𝐸
𝑖
) =

𝑗=1

𝑚

∑
𝑖=1

𝑛

∑ µ(𝐸
𝑖

∩ 𝐹
𝑗
)

𝑗=1

𝑚

∑ µ(𝐹
𝑗
).

is well defined and clearly and clearly finitely additive.⇒  µ
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So, now to show mu is countably additive that is all we need to show, so we take and𝐸 ∈ 𝑅 

disjoint. So, each Ei belongs to R. So,𝐸 = ∪
𝑖=1

∞ 𝐸
𝑖
 ,  𝐸

𝑖
∈ 𝑅,  {𝐸

𝑖
}

𝑖=1
∞ 

and𝐸
𝑖

= ∪
𝑘=1

𝑛
𝑖 𝐸

𝑖𝑘
 ,  𝐸

𝑖𝑘
∈ 𝑃 µ(𝐸

𝑖
) =

𝑘=1

𝑛
𝑖

∑ µ(𝐸
𝑖𝑘

).

case 1: ,  then of course disjoint union in P.𝐸 ∈ 𝑃 𝐸 = ∪
𝑖=1

∞ ∪
𝑘=1

𝑛
𝑖 𝐸

𝑛𝑘
 ,  



And therefore by proposition 2 we have µ(𝐸) =
𝑖=1

∞

∑
𝑘=1

𝑛
𝑖

∑ µ(𝐸
𝑖𝑘

) =
𝑖=1

∞

∑ µ(𝐸
𝑖
).

Case 2: disjoint𝐸 = ∪
𝑗=1

𝑛 𝐹
𝑗
 ,  𝐹

𝑗
∈ 𝑃,  {𝐹

𝑗
}

𝑗=1
𝑚  

Then 𝐹
𝑗

= ∪
𝑖=1

∞( 𝐹
𝑗

∩ 𝐸
𝑖
).  

Fj equals union i equals 1 to infinity of Fj intersection Ei, so this of course belongs to R each

of these belongs to R and this belongs to P. So, by case 1, you have

µ(𝐹
𝑗
) =

𝑖=1

∞

∑ µ(𝐸
𝑖

∩ 𝐹
𝑗
).
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So, µ(𝐸) =
𝑗=1

𝑛

∑ µ(𝐹
𝑗
) =

𝑗=1

𝑛

∑
𝑖=1

∞

∑ µ(𝐹
𝑗

∩ 𝐸
𝑖
) =

𝑖=1

∞

∑
𝑗=1

𝑛

∑ µ(𝐹
𝑗

∩ 𝐸
𝑖
).

mu of E and this is by definition sigma j equals 1 to n mu of Fj equals sigma j equals 1 to n

sigma i equals 1 to infinity mu of Fj intersection Ei and now, this is finite sum this is infinite

sum everything is non-negative no problems. So, sigma i equals 1 to infinity sigma j equals 1

to n mu of Fj intersection Ei. Ei intersection Fj j equals 1 to n is finite disjoint collection in R

and so, by finite additivity of mu in R we have already said clearly finitely additive.



So, by finite additivity in R you have that and you also have Ei equals union J equals 1 to

infinity Ei intersection Fj and therefore, you have that mu of Ei equal to sigma j equals 1 to n

mu of Ei intersection Fj and that is exactly this quantity here and therefore, you have

µ(𝐸) =
𝑖=1

∞

∑ µ(𝐸
𝑖
).

So, this proves completely that we have a measure on this.
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Remark: In defineℝ𝑁,   



𝑃 = {Π
𝑖=1

𝑛  [𝑎
𝑖
,  𝑏

𝑖
):  𝑎

𝑖
≤ 𝑏

𝑖
},  µ(Π

𝑖=1
𝑛  [𝑎

𝑖
,  𝑏

𝑖
)) = Π

𝑖=1
𝑛  (𝑏

𝑖
−  𝑎

𝑖
).

And then you will define R= finite unions from P= finite disjoint unions from P.

Then exactly as in the case only your notations competitions are a little messy, but there is no

ideological no difference from the arguments or the ideas involved. So, exactly as the case

N=1,  there exists a unique measure on R.µ

So, this is the sum of all the which is if disjoint and then you𝐸 = ∪
𝑖=1

𝑛 𝐸
𝑖
 ,  𝐸

𝑖
∈ 𝑃,  {𝐸

𝑖
}

have µ(𝐸) =
𝑖=1

𝑛

∑ µ(𝐸
𝑖
).

So, now we have a ring, we have a measure and we are ready to apply Caratheodory’s

method to construct the Lebesgue measures and as I said what we have done in case n equals

1 also we can do similarly in any general dimension and therefore, we will to construct the

Lebesgue measures in all dimensions next time.


